Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Возможно, ты сейчас участвуешь в соревновании по анализу данных или просто решил погрузиться в мира Data Science. Тогда эта статья будет тебе очень полезна!
Сражу скажу, что трюки, о которых мы сегодня поговорим, я не просто так назвал "грязными". Речь пойдет о вещах, которые в каком-то смысле нечестные или просто вводят в заблуждение других участников соревнований. Долго думал, стоит ли про эти техники вообще рассказывать, ведь в борьбе за призовые всегда велик соблазн начать хитрить. Решил, что все-таки расскажу про некоторые приемы, дабы вооружить честных людей, которые играют по правилам.
In this tutorial, you will learn the architectural details of Progressive GAN, which enable it to generate high-resolution images. In addition, we will see how we can use Torch Hub to import a pre-trained PGAN model and use it in our projects to generate high-quality images.
В задачах машинного обучения для обучения модели может использоваться известная целевая переменная (задачи такого типа называются «обучение с учителем»), либо модель самостоятельно учится находить закономерности с имеющихся данных, не имея заранее известные правильные результаты (такой тип задач называется «обучение без учителя»). Обучение с подкреплением (Reinforcement Learning, RL) не относится ни к первому типу, ни ко второму, однако обладает свойствами и того, и другого. Этот вид машинного обучения в настоящее время бурно развивается, разрабатывается множество теоретических алгоритмов RL [1], однако основная причина всплеска интереса заключается в множестве практических задач, в которых применяется RL, прежде всего в автоматизации, оптимизации и робототехнике. Обучение с подкреплением эффективно прежде всего там, где системе требуется анализировать окружающую среду и выбирать политику поведения с учетом получаемого отклика.
PyQt — это библиотека Python для создания приложений с графическим интерфейсом с помощью инструментария Qt. Созданная в Riverbank Computing, PyQt является свободным ПО (по лицензии GPL) и разрабатывается с 1999 года. Последняя версия PyQt6 — на основе Qt 6 — выпущена в 2021 году, и библиотека продолжает обновляться. Это руководство можно также использовать для PySide2, PySide6 и PyQt5.
Конечной задачей всей деятельности по созданию алгоритмов для обработки естественного языка (Natural Language Processing, NLP) является создание искусственного интеллекта (ИИ), который бы понимал человеческий язык, причем “понимал” в значении “осознавал смысл” (анализ текста) и “делал осмысленные высказывания” (синтез текста). Пока до этой цели ещё очень далеко, можно применять различные алгоритмические методы для извлечения какой-либо полезной информации из текстовых данных. А это уже очень полезно для ИТ мониторинга. В этой статье мы расскажем о применении моделей ML для целей классификации поступающих данных.
Это адаптированный перевод статьи Modern Python part 1: start a project with pyenv & poetry Фаози Браза, специалиста по Data Engineer. Повествование ведётся от лица автора оригинала.
"Слабой" ссылки не достаточно, чтобы объект оставался "живым": когда на объект ссылаются только "слабые" ссылки, сборщик мусора удаляет объект и использует память для других объектов. Однако, пока объект не удалён, "слабая" ссылка может вернуть объект, даже если не осталось обычных ссылок на объект.
Сегодня статья посвещана организации процесса фото - и видиосъёмки с микрокомпьютера Raspberry pi с последующим сохранением данных в облако в атоматическом режиме.
У меня стояла задача создать систему фото- и видеонаблюдения за птицами у кормушки.
В современном мире множество приложений используют трехуровневую архитектуру с базой данных в слоях данных. Наличие юнит-тестов обычно упрощает поддержку продукта, но присутствие базы данных в архитектуре заставляет разработчиков применять смекалку.
В этой статье я хочу провести обзор разных способов юнит-тестирования приложения с БД и рассказать о способе, который я не видел в русскоязычном сегменте интернета. Статья будет посвящена Python 3, pytest и ORM-фреймворку SQLAlchemy, но методы переносимы на другие инструменты.
Про colab знают, наверное, все. Этот инструмент позволяет независимым исследователям использовать облачную инфраструктуру с GPU и TPU бесплатно или почти бесплатно. Как всегда, проблемы возникают на больших данных.
Итак, предположим у нас есть на фронте React.js, на бэке соответственно DRF. Либо другие аналоги. API бэкенда полностью открыто - как для нашего фронта, так и открыто для postman, scrapy и т.п. Также у нас есть информация, что используя наше же api - конкуренты активно парсят цены, остатки и т.п. Можем ли мы им это запретить? - Не думаю. А вот усложнить им жизнь и развлечся за деньги заказщика сделать это интересным образом - вполне.
Читая pep8, я наткнулся на пункт об использовании анонимных функций - по версии пепа, они снижают читабельность, если использовать переменную с значением функции как функцию, лучше использовать def. Я решил сравнить def и lambda по другому параметру - быстродействию. Я предполагал, что lambda, заточенный под однострочники , будет быстрее выполняться и создаваться. В этом исследовании я это проверю.
Далее собственно детектив как оно есть, "расследование" которого ещё не окончено, можно присоединиться кстати… Пост будет обновляться, по окончанию (я надеюсь что баг таки найдётся) пост изменит название получив префикс "[SOLVED]"...
На КДПВ в гостях у TalkPython вы видите Гвидо ван Россума — создателя Python, Марка Шеннона, план ускорения Python в 5 раз за 4 года и, конечно, автора подкаста. А мы делимся подборкой пакетов Python, о которых шла речь в выпусках за уходящий год.
В прошлой статье я кратко описал методы и подходы, которые мы используем в inDriver при распознавании фото документов. Во второй части подробно опишу архитектуру CRAFT и CRNN, а также варианты их использования. Прошу под кат!
В предыдущих статьях мы подробно разобрали работу сериалайзера на основе классов BaseSerializer и Serializer, и теперь мы можем перейти к классу-наследнику ModelSerializer.
Все началось с одной из учебных групп в Telegram. Студенты там очень любят делать стикеры из сообщений своего преподавателя. Я выяснил, что делаются они в полуавтоматическом режиме: сообщение пересылается в бота, который рисует «пузырек» сообщения, а результат пересылается в официального стикер-бота.
Теорема о свёртке утверждает, что преобразование Фурье от свёртки двух функций является произведением их Фурье образов
В новом хобби проекте мне потребовалось детектировать людей на видео. Это одна из основных задач, решаемых искусственным интеллектом, но я давно этим не занимался и несколько отстал от жизни.
Это произошло, когда я присоединилась к одному из наших проектов, где был не только привычный REST, но и GraphQL API. Это было моё первое знакомство с ним. Я понятия не имела, что он собой представляет, в чем его особенности, а самое главное для меня, как QA инженера – не знала, как его тестировать.
Ниже я расскажу, что делала я, с какими проблемами сталкивалась, с чего можно начать и что важного и особенного надо знать про GraphQL для успешного тестирования как руками, так и с помощью автотестов. Вполне вероятно, что это поможет и вам разобраться в данном вопросе.