Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
В современной разработке AI-агентов возникает необходимость адаптации больших языковых моделей (LLM) для решения специфических задач, требующих не просто генерации текста, а выполнения последовательных действий с рассуждениями. В этой статье мы рассмотрим и сравним два основных подхода к настройке моделей: Supervised Fine-Tuning (SFT) и Reinforcement Learning (RL), используя библиотеку TRL (Transformer Reinforcement Learning) от Hugging Face.
Дроби, проценты, степени и логарифмы на примерах в математике и в python. Что это такое, все свойства их и как же решать примеры с ними. В этой статье про фундамент, который понадобится в дальнейшем: Самый старт для изучения python, математики в целом и машинного обучения, если математику совсем не знал. Все написано простым языком и не на 100 страниц.
Это личный опыт, оказавшийся для меня неожиданным. Настолько неожиданным, что я решил разобраться, почему результат оказался намного эффективнее, чем я ожидал. Когда я разобрался, мне захотелось поделиться новым пониманием.
На проекте возникла необходимость в функциональности красивой и настраиваемой отчетности, в чем я увидел возможность проверить себя в новой для себя области. Я вызвался разобраться и помочь продукту стать еще лучше.
Фреймворк наконец получил встроенный API для очередей задач — но без воркеров, так что чудес пока ждать рано.
Однажды я пришел на проект, на котором выполнение некоторых тест-сьютов занимало больше часа, настолько медленно, что запускать их на каждый merge request (MR) было просто нереально. Мы хотели запускать автотесты на каждый коммит в MR, но с такой скоростью это было невозможно. В результате мне удалось, за счёт серии небольших, но точных изменений добиться 8,5-кратного ускорения - без переписывания тестов с нуля. В статье расскажу, какие проблемы у нас возникли и как мы их решали.
This walkthrough shows how to use the Behave library to bring behavior-driven testing to data and machine learning Python projects.
Недавно мне в очередной раз довелось читать молодым коллегам курс по языку Python. По самому языку мы прошлись и начали говорить о паттернах проектирования и их реализации. В итоге захотелось мне превратить материалы курса в несколько статей. Это первая. Статья получилась большая, сначала я планировал рассказать в одном тексте обо всех порождающих паттернах, но, поглядев на размер, передумал и разбил историю на части.
На написание статьи меня сподвигла статья «Pydantic V2: Почему dataclasses вам больше не нужны» и меткий комментарий:«Спасибо за статью, но мне кажется Вы учите детей плохому. »Давайте попробуем разобраться, почему и датаклассы хороши, и pydantic V2 прекрасен, а вместе – они становятся ещё лучше. Или устроить смешанное единоборство?
Это история о том, как написать компилятор Python, генерирующий оптимизированные ядра и при этом позволяющий сохранить простоту кода.
Use dependency cooldowns (for example Dependabot or Renovate) to block most open source supply chain attacks by delaying new releases several days.
Заключительная (но ещё не последняя) статья из цикла про диффузные модели, где мы наконец отбросим примитивную модель из полносвязных слоёв и напишем работающий генератор изображений c архитектурой Diffusion Transformer (DiT). Разберёмся зачем нарезать изображения на квадратики и увидим, что произойдёт с вашей генерацией, если проигнорировать главную "слабость" трансформеров - неспособность понимать порядок.
Рынок процентных производных инструментов представляет собой крупнейший сегмент мирового финансового рынка. В основе корректной оценки практически любого финансового инструмента — от простых облигаций до сложных структурных продуктов лежит дисконтная кривая, представляющую собой фундаментальную рыночную конструкцию, определяющую временну́ю стоимость денег.
ㅤ
Время от времени я возвращаюсь к своему pet-проекту голосового ассистента с кодовым именем «Альфа», который разрабатывался как приватный голосовой интерфейс (а-ля «умная колонка») для управления своим «Умным домом». И в этот раз — так сошлись звезды или под влиянием магнитных бурь — мне очень захотелось добавить новый навык.
Я в BIM с 2020 года, реализую проекты для корпоративных задач компании, разрабатываю разные семейства оборудования, арматуры и устройств для корпоративной библиотеки. За это время создала ряд полезных скриптов для проектировщиков и координаторов. В статье расскажу про некоторые из скриптов, а именно, как мы из BIM-модели здания формируем схемы и получаем максимальный профит в программном обеспечении Revit.
Just In Time compilation is under active development in the CPython interpreter. This blog post outlines the targets for the next two Python releases.
Почему автотесты становятся нестабильными и перестают приносить пользу? Разбираем системные причины флаков, бессмысленных ретраев и бесконечных E2E-монстров. Практические принципы: моки, изоляция, атомарность и минимализм — без философии, только инженерия.
Для объективной оценки эффективности различных методов борьбы с дисбалансом классов мы проведем контролируемый эксперимент с синтетической генерацией данных и многоразовой валидацией.