Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Чтобы максимально запутать проблему — поручите ее решение программистам ;). Но если серьезно, то на мой взгляд с корутинами происходит нечто подобное, т.к., вольно или нет, с их помощью происходит замыливание создавшейся ситуации. Последняя характеризуется тем, что по-прежнему остаются проблемы параллельного программирования, которые никуда не уходят, и, главное, корутины не способствуют кардинальному их решению.
В этой переведенной статье ее автор, Rebecca Vickery, делится интересными функциями scikit-learn. Оригинал опубликован в блоге towardsdatascience.com.
В интернете огромное количество открытых данных. При правильном сборе и анализе информации можно решить важные бизнес-задачи. Например, стоит ли открыть свой бизнес?
С таким вопросом ко мне обратились клиенты, желающие получить аналитику рынка услуг фотостудий. Для них было важно понять: стоит ли открывать фотостудию, где отрыть, какая площадь помещения, сколько залов открыть вначале, в какой месяц лучше стартовать и многие другие вопросы.
Ян Пойнтер поможет разобраться, как настроить PyTorch в облачной среде, как создавать нейронные архитектуры, облегчающие работу с изображениями, звуком и текстом. Книга охватывает важнейшие концепции применения переноса обучения, модели отладки и использования библиотеки PyTorch. Вы научитесь: — Внедрять модели глубокого обучения в работу — Использовать PyTorch в масштабных проектах — Применять перенос обучения — Использовать PyTorch torchaudio и сверточные модели для классификации аудиоданных — Применять самые современные методы NLP, используя модель, обученную на «Википедии» — Выполнять отладку моделей PyTorch с TensorBoard и флеймграф — Развертывать приложения PyTorch в контейнерах «PyTorch –– это одна из самых быстрорастущих библиотек глубокого обучения, соперничающая с гигантом Google — TensorFlow — практически на равных.
Мы рады сообщить, что июльский выпуск расширения Python уже доступен для Visual Studio Code. Вы можете загрузить расширение Python из Marketplace или установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, перезапустив Visual Studio Code. Вы можете узнать больше о поддержке Python в Visual Studio Code в документации.
Про connection.execute_wrapper
Это начало истории о том, как сначала математика вторглась в геологию, как потом пришёл айтишник и всё запрограммировал, создав тем самым новую профессию «цифрового геолога». Это рассказ о том, чем стохастическое моделирование отличается от кригинга. А также это попытка показать, как ты сам можешь написать свой первый геологический софт и, возможно, как-то преобразить отрасль геологического и нефтяного инжиниринга.
Под динамическим определением объекта можно понимать определение во время исполнения. В отличие от статического определения, которое используется в привычном определении класса с помощью ключевого слова class, динамическое определение использует встроенный класс type.
Cегодня мы будем разбираться с алгоритмом сжатия JPEG. Многие не знают, что JPEG — это не столько формат, сколько алгоритм. Большинство JPEG-изображений, которые вы видите, представлены в формате JFIF (JPEG File Interchange Format), внутри которого применяется алгоритм сжатия JPEG. К концу статьи вы будете гораздо лучше понимать, как этот алгоритм сжимает данные и как написать код распаковки на Python. Мы не будем рассматривать все нюансы формата JPEG (например, прогрессивное сканирование), а поговорим только о базовых возможностях формата, пока будем писать свой декодер.
Мы публикуем конспект вступительной лекции видеокурса «Бэкенд-разработка на Python». В ней Егор Овчаренко egorovcharenko, тимлид в Яндекс.Такси, рассказал о внутреннем устройстве интерпретатора CPython.
Как-то во время чтения книги «Reinforcement Learning: An Introduction» я задумался над дополнением своих теоретических знаний практическими, однако решать очередную задачу балансировки бруска, учить агента играть в шахматы или же изобретать другой велосипед желания не было.
При этом в книге был один интересный пример на оптимизацию очереди клиентов, который с одной стороны не слишком сложен в плане реализации/понимания процесса, а с другой — вполне интересный и может быть с тем или иным успехом внедрен в реальную жизнь.
Немного изменив данный пример, я и пришел к той идее, о которой далее и пойдет речь.
Nim — это сочетание синтаксиса Python и производительности C.
Несколько недель назад я бродил по GitHub и наткнулся на любопытный репозиторий: проект был полностью написан на языке Nim. До этого я с ним не сталкивался, и в этот раз решил разобраться, что это за зверь.
Нынче важнейшим вектором развития многих компаний является цифровизация. И почти всегда она так или иначе связана с машинным обучением, а значит, с моделями, для которых нужно считать признаки.
Можно делать это вручную, но также для этого существуют фреймворки и библиотеки, ускоряющие и упрощающие этот процесс.
Об одной из них, featuretools, а также о практическом опыте ее использования мы сегодня и поговорим.
В этой статье будет рассказан опыт создания нейросети по распознаванию лиц, для сортировки всех фотографий из беседы ВК на поиск определённого человека. Без какого-либо опыта написания нейросетей и минимальными знаниями Python.
На тот момент вся компания занималась глобальным редизайном всего продукта, и нам были озвучены следующие требования:
В наше время голосовые роботы набирают огромную популярность, от банального заказа такси, до продаж клиентам. Создание голосового бота сводится к трем базовым этапам.