Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Итак, пользователи вашего приложения уже жалуются на долгую загрузку данных, а серверы едва справляются с нагрузкой. Одна из возможных (и частых) причин в том, что API пытается выгрузить тысячи записей за один запрос. Без пагинации базы данных захлебываются под тяжестью SELECT-запросов, а клиенты уходят к конкурентам, не дождавшись ответа. Почему пагинация — это не опция, а must-have для любого API?
Сегодня хочу рассказать о полнотекстовом поиске — как это все работает в django, а как в postgres, и откуда вообще взялось. Современные компании ежедневно сталкиваются с разной текстовой информацией. Эффективный поиск не только ускоряет доступ к нужным данным, но и повышает продуктивность, снижает затраты и открывает новые возможности для анализа и принятия решений.
В статье речь пойдет об ALD Pro (Astra Linux Domain Pro). Один заказчик попросил предоставить инструмент нагрузки LDAP-запросов, да не простой, а с GUI и графиками. Наша команда в своей работе активно использует open source инструмент нагрузочного тестирования Locust (англ. Саранча).
Петербургский Фонд капитального ремонта опубликовал документы, в которых указана задолженность за каждую квартиру в городе по итогам 2024 года. Мы изучили эти файлы, чтобы ответить на вопрос: где и почему хуже всего платят за ремонт в своём доме. Я занимаюсь анализом данных и дата-журналистикой в газете "Деловой Петербург". Расскажу о том, как объединяли информацию из множества локальных html-таблиц и приведу примеры кода на "Питоне".
В этой статье разберём несколько вопросов на собеседованиях, связанных с устройством CPython и его C API.
В этой статье на примере решения несложного архитектурного кейса я покажу, что ответов только на 3 вопроса при проектировании систем распределённой параллельной обработки данных будет достаточно для обеспечения жёстких нефункциональных требований.
Примерно месяц назад проект CPython смерджил новую стратегию реализации интерпретатора байт-кода. Первоначальные результаты были очень впечатляющими, продемонстрировав среднее повышение производительности на 10-15% в широком спектре бенчмарков на различных платформах.
В этом примере используются измерения акселерометра MPU 6050 и машинное обучение (ML) для распознавания трех жестов рукой с помощью ESP32. Данные из сенсора распознаются на микроконтроллере и результат выводится в консоль в виде названия жеста и вероятности результата. Модель ML использует TensorFlow и Keras и обучается на выборке данных, представляющей три различных жеста: "circle" (окружность), "cross" (пересечение) и "pad" (поступательное движение).
Я научил буфер обмена думать за меня, и теперь всё вокруг стало быстрее. Копировать и вставлять — это для новичков. А что если выделенный текст мгновенно станет грамотным, переведётся на нужный язык или расшифрует картинку?
Это первая статья из цикла, посвященного разработке телеграм-бота с MiniApp для случайных чатов. В этой части мы сосредоточимся на создании бэкенда, используя современные технологии: FastAPI для разработки API, Redis для хранения данных в реальном времени и Centrifugo для обеспечения мгновенного взаимодействия между пользователями. Сегодня мы подробно разберем архитектуру проекта, настройку серверов и реализацию логики бота.
Сегодня разбираем реализацию Gibbs Sampling на Python. Это один из методов Монте‑Карло по цепям Маркова (MCMC), который решает такую задачу:«У нас есть сложное многомерное распределение, но мы не можем из него напрямую сэмплировать. Однако, если у нас есть условные распределения, то мы можем брать новые точки, обновляя поочередно каждую координату.»
У меня, как у практикующего юриста в консалтинге и человека, горящего желанием научиться новым навыкам, появилась идея (которая в ходе реализации изменила свой вид) создать программу для анализа эмоций и тональности документов.
В этой статье мы коротко пройдемся по основным вариантам реализации акторной модели на Python.
А теперь о том, что происходило в последнее время на других ресурсах.
Как часто ваши простенькие прототипы или предметные скрипты превращаются в полномасштабные приложения? Простота естественного разрастания кода не лишена и обратной стороны — такой код становится трудно обслуживать. Количественное размножение словарей в качестве основных структур данных чётко сигнализирует о наличии технического долга. К счастью, сегодня Python предоставляет для простых словарей много адекватных альтернатив.
Kafka-консьюмеры не всегда работают так стабильно, как хотелось бы. Иногда они просто зависают — без ошибок, без падений, но и без обработки сообщений. LivenessProbe в Kubernetes помогает автоматически перезапускать зависшие сервисы, но с Kafka-консьюмерами всё не так просто: стандартного решения для них нет. В этой статье разберём, как правильно реализовать livenessProbe для консьюмеров с помощью паттерна Heartbeat, чтобы не перезапускать их вручную.
Не так давно мне пришла мысль попробовать создать собственного Телеграм-бота (просто из любопытства). И тут мне в голову пришла идея воспользоваться популярным ChatGPT и попробовать создать бота с нуля, во всём следуя инструкциям нейронки. Устанавливать дополнительный софт на своём основном ПК мне не очень хотелось, поэтому разместить бота я решил на VDS-сервере.
Автоматический дебаг с помощью языковых моделей уже не новость, и разработчики используют LLM‑модели и среды разработки с интегрированным ИИ, чтобы анализировать код и предлагать исправления. Но что если встроить в этот процесс ещё один мощный инструмент — поиск в интернете?