Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Допустим, вы создаёте сайт с CMS на основе Django, у которого должны быть какие-то динамические настройки сайта, которые будут доступны пользователю. Например, название сайта, какая-то специализированная информация, при этом вы учитываете возможность мультиязычности. То что тогда можно использовать для этого? Мне пришла мысль использовать базу данных.
Для реализации этого требуется следующее:
Давайте разберёмся по порядку, как это реализовать.
В этой статье “шпаргалке” рассмотрено добавление пользовательских кнопок в интерфейс Django Admin. В первой части рассказано как добавить одно кнопку на страницу списка выбранной модели – list view. Например кнопку импорта чего либо. Во второй части рассказано как добавить пользовательские кнопки действий (actions) для каждой выбранной записи отдельно с дополнительными формами.
Я занимаюсь автоматизацией тестирования. Как и у всех автоматизаторов, у меня есть набор библиотек и инструментов, которые я обычно выбираю для написания тестов. Но периодически возникают ситуации, когда ни одна из знакомых библиотек может решить задачу с риском сделать автотесты нестабильными или хрупкими. В этой статье я хотел бы рассказать, как вроде бы стандартная задача использования mock'ов привела меня к написанию своего модуля. Также хотел бы поделиться своим решением и услышать обратную связь.
С помощью uwsgi
В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.
Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.
Если вы data scientist, или занимаетесь машинным обучением, как я — наверняка вы пишете большую часть кода в Jupyter Notebooks. Для всех остальных поясню: Jupyter — это замечательная система, позволяющая вам сочетать исполняемый программный код и текстовые фрагменты на основе Markdown в едином документе, который можно редактировать и выполнять прямо через браузер. Такой документ называется ноутбуком (теперь вы знаете, как подарить другу ноутбук на день рождения и не сильно потратиться)
Как то вечером, придя домой с работы, я решил немного позаниматься домашним проектом. Я сделал несколько правок и сразу захотел поэкспериментировать с ними. Но до экспериментов мне пришлось заходить на VPS, пулить изменения, пересобирать контейнер и запускать его. Тут я и решил, что пора разобраться с непрерывной доставкой.
Часто ли вы видите токсичные комментарии в соцсетях? Наверное, это зависит от контента, за которым наблюдаешь. Предлагаю немного поэкспериментировать на эту тему и научить нейросеть определять хейтерские комментарии.
Итак, наша глобальная цель — определить является ли комментарий агрессивным, то есть имеем дело с бинарной классификацией. Мы напишем простую нейросеть, обучим ее на датасете комментариев из разных соцсетей, а потом сделаем простой анализ с визуализацией.
Для работы я буду использовать Google Colab. Этот сервис позволяет запускать Jupyter Notebook'и, имея доступ к GPU (NVidia Tesla K80) бесплатно, что ускорит обучение. Мне понадобится backend TensorFlow, дефолтная версия в Colab 1.15.0, поэтому просто обновим до 2.0.0.
Представляем вашему вниманию вторую часть перевода материала, посвящённого особенностям работы с модулями в Python-проектах Instagram. В первой части перевода был дан обзор ситуации и показаны две проблемы. Одна из них касается медленного запуска сервера, вторая — побочных эффектов небезопасных команд импорта. Сегодня этот разговор продолжится. Мы рассмотрим ещё одну неприятность и поговорим о подходах к решению всех затронутых проблем.
Недавно в Redash приступили к смене одной системы выполнения задач на другую. А именно — они начали переход с Celery на RQ. На первом этапе на новую платформу перевели лишь те задания, которые не выполняют запросы напрямую. Среди таких заданий — отправка электронных писем, выяснение того, какие запросы должны быть обновлены, запись пользовательских событий и другие вспомогательные задачи.
При сложной структуре рекламных кампаний и большого количества звонков становятся необходимы дополнительные инструменты хранения, обработки и анализа информации о поступающих обращениях. Часто нужен быстрый доступ к данным за большой период времени. Иногда необходима сложная обработка данных, соотнесение звонков к определенному каналу или кампании.
Одним из вариантов ускорения работы, который также дает дополнительные преимущества является импорт звонков из CoMagic в Google BigQuery. О преимуществах BigQuery пишут много, так что перейдем непосредственно к созданию.