Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Продолжаем перевод бесплатной книги “Парадигмы алгоритмического проектирования (жадные алгоритмы, разделяй и властвуй и динамическое программирование)”
Новая подборка советов про Python и программирование из авторского канала @pythonetc.
Это вторая часть из серии обучающих статей о создании смарт-контрактов на Python в блокчейн сети Ontology. В предыдущей статье мы познакомились с Blockchain & Block API смарт-контракта Ontology.
Сегодня мы обсудим, как использовать второй модуль— Storage API. Storage API имеет пять связанных API, которые позволяют добавление, удаление и изменения в постоянном хранилище в смарт-контрактах на блокчейне.
Глобальная паутина изо дня в день пополняется статьями о самых популярных, наиболее употребляемых алгоритмах машинного обучения для решения различных задач. Причём основа этих статей, немного изменённая по форме в том или ином месте, кочует от одного исследователя данных к другому. При этом все эти работы объединяет один общепринятый, непреложный постулат: применение того или иного алгоритма машинного обучения зависит от размера и природы имеющихся в распоряжении данных и поставленной задачи.
Публикуем первую часть перевода очередного материала из серии, посвящённой тому, как в Instagram работают с Python. В первом материале этой серии речь шла об особенностях серверного кода Instagram, о том, что он представляет собой монолит, который часто меняется, и о том, как статические средства проверки типов помогают этим монолитом управлять. Второй материал посвящён типизации HTTP-API. Здесь речь пойдёт о подходах к решению некоторых проблем, с которыми столкнулись в Instagram, используя Python в своём проекте. Автор материала надеется на то, что опыт Instagram пригодится тем, кто может столкнуться с похожими проблемами.
В построении ML-моделей Python сегодня занимает лидирующее положение и пользуется широкой популярностью сообщества Data Science специалистов
Также, как и большинство разработчиков, Python привлекает нас своей простотой и лаконичным синтаксисом. Мы используем его для решения задач машинного обучения при помощи искусственных нейронных сетей. Однако, на практике, язык продуктовой разработки не всегда Python и это требует от нас решения дополнительных интеграционных задач.
В этой статье расскажу о тех решениях, к которым мы пришли, когда нам потребовалось связать Keras-модель языка Python с Java.
Эта отрывок из бесплатной книги “Парадигмы алгоритмического проектирования (жадные алгоритмы, разделяй и властвуй и динамическое программирование)”
В сентябре этого (2019) года прошли выборы Губернатора Санкт-Петербурга. Все данные о голосовании находятся в открытом доступе на сайте избирательной комиссии, мы не будем ничего ломать, а просто визуализируем информацию с этого сайта www.st-petersburg.vybory.izbirkom.ru в нужном для нас виде, проведем совсем несложный анализ и определим некоторые «волшебные» закономерности.
Каждый экземпляр класса в CPython, созданный при помощи синтаксической конструкции class, участвует в механизме циклической сборки мусора. Это увеличивает след в памяти каждого экземпляра и может создавать проблемы с памятью в высоконагруженных системах.
Нельзя ли обойтись в случае необходимости одним базовым механизмом подсчета ссылок?
Перевод оригинальной статьи: James TimminsWhen to Use a List Comprehension in Python
Я начинаю серию статей, посвященных разработке сайтов на Django. Информация для этих статей получена из собственного опыта (полтора года коммерческой разработки на Django, несколько мелких фриланс-проектов, часть проекта pythonworld.ru написана на Django).
Это первая часть из серии обучающих статей о создании смарт-контрактов на Python в блокчейн сети Ontology при помощи инструмента разработки смарт-контрактов SmartX.
В этой статье мы начнём знакомство с API смарт-контракта Ontology. API смарт-контракта Ontology разделен на 7 модулей
Сегодня мы публикуем второй материал из цикла, посвящённого использованию Python в Instagram. В прошлый раз речь шла проверке типов серверного кода Instagram. Сервер представляет собой монолит, написанный на Python. Он состоит из нескольких миллионов строк кода и имеет несколько тысяч конечных точек Django.
Мы уже рассказывали о платформе LEGO MINDSTORMS Education EV3. Основные задачи этой платформы — обучение на практических примерах, развитие навыков STEAM и формирование инженерного мышления. В ней можно проводить лабораторные работы по изучению механики и динамики. Лабораторные стенды из кубиков LEGO и утилиты по регистрации и обработке данных делают опыты еще интереснее и нагляднее и помогают детям лучше понять физику. Например, школьники могут собрать данные о температуре плавления и с помощью приложения систематизировать их и представить в виде графика. Но это только начало: сегодня мы расскажем, как дополнить этот набор средой программирования MicroPython и использовать его для обучения робототехнике.
В предыдущей статье я рассказал про нашу систему поиска похожих заявок. После ее запуска мы стали получать первые отзывы. Какие-то рекомендации аналитикам нравились и были полезны, какие-то — нет.
Для того, чтобы двигаться дальше и находить более качественные модели, необходимо было сначала оценить работу текущей модели. Также необходимо было выбрать критерии, по которым две модели можно было бы сравнить между собой.
Сегодня публикуем вторую часть перевода материала, посвящённого статическому анализу больших объёмов серверного Python-кода в Instagram.