Собрали в одном месте самые важные ссылки
читайте авторский блог
Грамматика становится ещё лучше, если вы можете добавить (некоторую) семантику в соответствии с правилами. В частности, для анализатора Python, который я разрабатываю, мне нужно возвращать узел AST из каждой альтернативы, поскольку я хочу придерживаться текущей реализации AST в CPython.
Распознавания лиц уже захватило весь мир. Во всех крупных странах уже пользуются этой полезной фишкой. Почему не сделать жизнь людей еще удобнее и не встроить распознавание лиц в камеру хранения?
Датасет, используемый далее, взят с уже прошедшего соревнования на kaggle отсюда.
На вкладке Data можно прочитать описание всех полей.
Весь исходный код здесь в формате ноутбука.
Расскажу вам про то, как я сделал возможным получать и отображать информацию из публичного API KudaGo на вашем зеркале. Само собой, речь не о простом, а об «умном» зеркале.
Статья описывает использование Google reCAPTCHA с батарейкой evileg-core
В статье пойдет речь о классификации тональности текстовых сообщений на русском языке (а по сути любой классификации текстов, используя те же технологии). За основу возьмем данную статью, в которой была рассмотрена классификация тональности на архитектуре CNN с использованием Word2vec модели. В нашем примере будем решать ту же самую задачу разделения твитов на позитивные и негативные на том же самом датасете с использованием модели ULMFit. Результат из статьи, (average F1-score = 0.78142) примем в качестве baseline.
Я упоминал о левой рекурсии как о камне преткновения несколько раз, и пришло время разобраться с этим. Основная проблема заключается в том, что парсер с лево-рекурсивным спуском мгновенно падает из-за переполнения стека.
Django описывают как «веб-фреймворк для перфекционистов с дедлайнами». Его создали, чтобы переходить от прототипов к готовым сервисам как можно быстрее.
Фреймворк поможет разработать CRUD приложение под ключ. С Django не придется изобретать велосипед. Он работает из коробки и позволит сосредоточиться на бизнес-логике и продуктах для обычных людей.
Одна из самых крутых фишек iPhone X – это метод разблокировки: FaceID. В этой статье разобран принцип работы данной технологии.
Изображение лица пользователя снимается с помощью инфракрасной камеры, которая более устойчива к изменениям света и цвета окружающей среды. Используя глубокое обучение, смартфон способен распознать лицо пользователя в мельчайших деталях, тем самым “узнавая” владельца каждый раз, когда тот подхватывает свой телефон. Удивительно, но Apple заявила, что этот метод даже безопаснее, чем TouchID: частота ошибок 1:1 000 000.
В этой статье разобран принцип алгоритма, подобного FaceID, с использованием Keras. Также представлены некоторые окончательные наработки, созданные с помощью Kinect.
К NLP задачам относят определение тональности текста, парсинг именованных сущностей, определение того, что хочет от вашего бота собеседник: заказать пиццу или получить справочную информацию и многое другое. Более подробно про задачи и методы NLP вы можете прочитать тут.
В этой статье мы расскажем, как запустить REST север с предобученными моделями NLP, готовыми к использованию без какой-либо дополнительной настройки или обучения.
В наши дни, если вы пишете некое Python-приложение, то вам, скорее всего, придётся оснащать его функционалом HTTP-клиента, который способен общаться с HTTP-серверами. Повсеместное распространение REST API сделало HTTP-инструменты уважаемыми жителями бесчисленного множества программных проектов. Именно поэтому любому программисту необходимо владеть паттернами, направленными на организацию оптимальной работы с HTTP-соединениями.
Мы уже используем ML-модели для классификации инцидентов. Чтобы помочь нашей команде эффективнее обрабатывать заявки, мы создали еще одну ML-модель для подготовки списка "ранее закрытые похожие инциденты". Детали — под катом.
В области автоматического тестирования можно встретить разные инструменты, так, для написания авто-тестов на языке Python одним из наиболее популярных решений на данный момент является py.test.
Прошерстив множество ресурсов связанных с pytest и изучив документацию с официального сайта проекта я не смог найти прямое описание решения одной из основных задач — запуск тестов с тестовыми данными, хранящимися в отдельном файле. Иначе, можно сказать, подгрузки параметров в тестовые функции из файла(-ов) или параметризация из файла напрямую. Такая процедура в тонкостях нигде не описана и единственные упоминание данной возможности есть лишь в одной строке документации pytest.
В этой статье я расскажу о своем решении этой задачи.
При разработки web-приложения или бота мы часто имеем дело с какой-либо секретной информацией, различными токенами и паролями (API-ключами, секретами веб-форм). "Хардкодить" эту информацию, а тем более сохранять в публично доступной системе контроля версий это очень плохая идея.
В прошлый раз получился простой генератор парсера PEG. Сейчас же я покажу, что на самом деле делает сгенерированный парсер при разборе программы. Я погрузился в ретро-мир ASCII-арта, в частности, библиотеку с именем «curses», которая доступна в стандартной поставке Python для Linux и Mac, а также как дополнение для Windows.
Сегодня мы продолжим изучать сетевые возможности Raspberry Pi, а точнее их реализацию на языке Python. В первой части мы рассмотрели базовые функции простейшего веб-сервера, работающего на Raspberry Pi. Сейчас мы пойдем дальше, и рассмотрим несколько способов, как сделать наш сервер интерактивным.
Данная статья содержит решений заданий Encoding ASCII и Encoding UU направленные на кодировки, Hash Message Digest 5 и Hash SHA-2 — на нахождение прообраза хеша, Shift cipher — шифр сдвига, и Pixel Madness — на составление картинки.