Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Нейронные сети довольно популярны. Их главное преимущество в том, что они способны обобщать довольно сложные данные, на которых другие алгоритмы показывают низкое качество. Но что делать, если качество нейронной сети все еще неудовлетворительное?
И тут на помощь приходят ансамбли...
В этой статье я расскажу о том, как Parquet сжимает большие наборы данных в маленький файл footprint, и как мы можем достичь пропускной способности, значительно превышающей пропускную способность потока ввода-вывода, используя параллелизм (многопоточность).
Очень часто во время работы над каким-либо проектом возникают задачи решение которых требует ввода в консоль нескольких команд, такие как, например, пересборка фронтенда, запуск/остановка нескольких docker-контейнеров, развертывание окружения на новом девелоперском компе и тому подобные вещи.
И вот, собственно, однажды возникла идея как сократить время на это вот все, максимально упростив процесс, реализовав небольшую утилиту, позволяющую обернуть наборы часто производимых действий в пункты удобного меню выводимого в консоль.
Осенью 2019 мы запустили сервис поиска похожих изображений на основе библиотеки faiss. Он помогает нам понимать, что фотографии уже встречались в другом объявлении, даже если они достаточно серьёзно искажены: размыты, обрезаны и тому подобное. Так мы определяем потенциально фейковые публикации.
Мне бы хотелось рассказать о тех проблемах, с которыми мы столкнулись в процессе создания этого сервиса, и наших подходах к их решению.
В прошлой статье мы описали эксперимент по определению минимального объема вручную размеченных срезов для обучения нейронной сети на данных сейсморазведки. Сегодня мы продолжаем эту тему, выбирая наиболее подходящую функцию потерь.
Рассмотрены 2 базовых класса функций – Binary cross entropy и Intersection over Union – в 6-ти вариантах с подбором параметров, а также комбинации функций разных классов. Дополнительно рассмотрена регуляризация функции потерь.
Спойлер: удалось существенно улучшить качество прогноза сети.
В 2019 году нам потребовалось автоматизированно проверить умение писать Python-код у сотен разработчиков. Так мы отбирали будущих студентов для Школы бэкенд-разработки. Это не то же самое, что предложить решить задачу на листе бумаги, как на собеседовании. С другой стороны, мы также не могли переиспользовать условия задач, уже подготовленные для наших соревнований по программированию. Дело в том, что соревнования с целью определить лучших из лучших — это одно, а отбор специалистов с небольшим опытом в школу — совсем другое. Нам требовались задачи, по решению которых было бы видно, обладает ли разработчик базовыми навыками написания кода и умением грамотно использовать память и время. Вот какие условия мы составили.
В этой статье я бы хотел рассказать как можно реализовать автоматический контроль над изменениями данных в проектах построенных с использованием Django.
В этой заметке я расскажу о паре простых приемов, полезных при работе с данными, не помещающимися в память локальной машины, но все еще слишком мелкими чтобы называться Большими. Следуя англоязычной аналогии (large but not big), будем называть эти данные толстыми. Речь идет о размерах в единицы и десятки гигабайт.
Недавно я решил, что пора наконец-то разобраться в теме управления зависимостями в моих Python проектах и начал искать решение, которое бы меня полностью устроивало. Я поэкспериментировал с pipenv, проштудировал документацию к poetry, почитал другие статьи по теме. К сожалению, идеального решения я так и не нашел. В результате, я изобрел новый велосипед свой подход, который и предлагаю обсудить под катом.
Джанго это мощный фреймворк для создания веб-приложений. Изначально Django был создан для того, чтобы быстро создавать, например, новостные сайты (или другие сайты, который нужно создавать максимально быстро). И после нативного PHP не покидает ощущение, что ты едешь на очень быстрой машине разработки. Чтобы посмотреть все его возможности для быстрой разработки, мы с вами попробуем создать простое Todo — приложение.
Недавно у меня возникла идея о том, чтобы поделиться с интересующимся кругом лиц о том как пишутся скраперы. Так как большинству аудитории знаком Python все дальнейшие примеры будут написаны на нём.
Данная часть рассчитана для того, чтобы познакомить тех, кто ещё не пробовал себя в данной сфере. Если вы уже продвинутый читатель, то можете смело листать дальше, но для сохранения закономерности я бы посоветовал уделить немного внимания данной статье.
Как начать использовать Airflow
FastAPI — это фреймворк для создания лаконичных и довольно быстрых HTTP API-серверов со встроенными валидацией, сериализацией и асинхронностью,
что называется, из коробки. Стоит он на плечах двух других фреймворков: работой с web в FastAPI занимается Starlette, а за валидацию отвечает Pydantic.
Комбайн получился легким, неперегруженным и более, чем достаточным по функционалу.