Собрали в одном месте самые важные ссылки
консультируем про IT, Python
В данной статье рассмотрен метод расчёта каннибализации для мобильного приложения на основе классического A/B-теста. В данном случае рассматриваются и оцениваются целевые действия в рамках процесса реаттрибуции с рекламного источника (Direct, Criteo, AdWords UAC и прочих) по сравнению с целевыми действиями в группе, на которую реклама была отключена.
В статье дан обзор классических методик сравнения независимых выборок с кратким теоретическим базисом и описанием примененных библиотек, в т.ч. вкратце описывается суть метода bootstrap’а и его реализация в библиотеке FaceBook Bootstrapped, а также проблемы, возникающие на практике при применении этих методик, и способы их решения.
Вы, возможно, знаете, что компьютеры теперь могут автоматически учиться играть в игры ATARI(получая на вход сырые игровые пиксели!). Они бьют чемпионов мира в игру Го, виртуальные четвероногие учатся бегать и прыгать, а роботы учатся выполнять сложные задачи манипуляции, которые бросают вызов явному программированию. Оказывается, что все эти достижения не обходятся без RL. Я также заинтересовался RL в течение прошлого года: я работал с книгой Ричарда Саттона (прим.пер.: ссылка заменена), читал курс Дэвида Сильвера, смотрел лекции Джона Шульмана, написал библиотеку RL на Javascript, летом проходил практику в DeepMind, работая в группе DeepRL, и совсем недавно — в разработке OpenAI Gym, – нового инструментария RL. Так что я, конечно, был на этой волне, по крайней мере, год, но до сих пор не удосужился написать заметку о том, почему RL имеет большое значение, о чем он, как все это развивается.
И сотворил Гвидо строки по образу C, по образу массивов символов сотворил их. И увидел Гвидо, что это хорошо. Или нет?
Представьте, что вы пишете совершенно идиоматичный код по обходу неких данных с вложенностью. Beautiful is better than ugly, simple is better than complex, так что вы останавливаетесь на следующем варианте кода
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям будет сложно к вам заехать, ведь им будет негде припарковаться.
Поэтому я решил направить камеру в окно и использовать глубокое обучение, чтобы мой компьютер сообщал мне, когда освободится место
В качестве дополнения к моей недавней статье хотелось бы также поговорить о теме MU (Multi User) MIMO. Есть у мною уже упомянутого профессора Хаардта одна очень известная статья, где он вместе со своими коллегами предлагает алгоритм разделения пользователей по нисходящему каналу (Down Link) на основе линейных методов, а именно блоковой диагонализации (Block Diagonalization) канала. Статья имеет внушающее количество цитирований, а также является краеугольной публикацией для одного из заданий экзамена. Поэтому почему бы и не разобрать основы предлагаемого алгоритма?
Сегодня мы построим систему, которая будет при помощи Spark Streaming обрабатывать потоки сообщений Apache Kafka и записывать результат обработки в облачную базу данных AWS RDS.
Представим, что некая кредитная организация ставит перед нами задачу обработки входящих транзакций «на лету» по всем своим филиалам. Это может быть сделано с целью оперативного расчета открытой валютой позиции для казначейства, лимитов или финансового результата по сделкам и т.д.
Цели данной публикации:
Что, если у вас идея для классного, полезного белка, и вы хотите получить его в реальности? Например, хотите создать вакцину против H. pylori (как словенская команда на iGEM 2008), создав гибридный белок, который сочетает фрагменты флагеллина E. coli, стимулирующие иммунный ответ с обычным флагеллином H. pylori?
Чтобы дойти до сложных алгоритмов обработки, стоит проанализировать стандартные схемы, с чего я и предлагаю начать.
Для примеров обработки будет использоваться изображение с различным наборов цветов: