Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Несколько дней назад мы публиковали обзор первого дня Data Science Weekend 2018, который прошел 2-3 марта на Мансарде Rambler&Co. Изучив практику использования алгоритмов машинного обучения, теперь перейдем к обзору второго дня конференции, в течении которого спикеры рассказывали об использовании различных инструментов дата инженера для нужд дата-платформ, ETL, сервисах подсказок при поиске и многом другом.
Новый релиз Krita принес кучу изменений. Традиционно, при изменении мажорной версии много где сломали обратную совместимость и разработчики предупреждают о необходимости бэкапов при пересохранении в новом формате. Особенно сильно была переработана работа с векторными сущностями и текстом. Разработчики признались, что у них не хватило сил тянуть отдельную реализацию встроенного текста в виде ODT, поэтому все перевели на распространенный SVG. Для оптимальной совместимости они напоминают о возможности установки двух веток одновременно. В Windows все реализовано достаточно привычно, а для Linux есть snap пакеты и другие варианты stand-alone установки.
Красота, как известно, требует жертв, но и мир обещает спасти. Достаточно свежий (2015г) визуализатор от Google призван помочь разобраться с процессами, происходящими в сетях глубокого обучения. Звучит заманчиво.
Красочный интерфейс и громкие обещания затянули на разбор этого дизайнерского шайтана, с неинтуитивно отлаживающимися глюками. API непривычно скудный и часто обновляющийся, примеры в сети однотипны (глаза уже не могут смотреть на заезженный MNIST).
В своём прошлом посте про хеш-стеганографию я предложил иной подход в стеганографии — не вкраплять никакой информации в контейнер, а просто упорядочивать контейнеры в нужном порядке и тем самым передавать скрытую информацию. Два дня назад romabibi опубликовал proof of consept для хеш-стеганографии в соц.сети вКонтакте.
Сохраняем большие объемы данных, а потом читаем.
В данной статье хочу поделиться с вами историей о том, как одна и та же архитектура модели принесла сразу две победы в соревнованиях по машинному обучению на платформе topcoder с интервалом месяц.
PSON (Pandora Simple Object Notation) – бинарный формат упаковки, позволяющий переводить простые типы данных, массивы и списки в последовательность байт (простую строку). PSON придуман и разработан для использования в свободной распределённой информационной системе Pandora как более простая альтернатива бинарному формату BSON.
О том как использовать Manager для поиска по нескольким моделям
В начале февраля Павел Дуров анонсировал, что у Telegram появился так называемый Telegram Login Widget. Проще говоря, теперь любой желающий может встроить авторизацию на своем сайте через Telegram, наряду с уже удобными способами входа через привычные для всех Google, Twitter, Facebook и так далее.
В этой заметке я хочу рассказать и наглядно показать как это сделать, используя Django. Исходный код свободно доступен в моем репозитории на GitHub. Пользуйтесь на здоровье.
Некоторое время назад решил разобраться, что такое стеганография, в чем её смысл и какая она бывает. И спустя несколько ссылок наткнулся на интересную статью про хэш-стеганографию. Возник вопрос — а почему бы не попробовать реализовать такой способ передачи на практике? Для начала — в виде proof of concept.
Я хочу рассказать про метод оптимизации известный под названием Hessian-Free или Truncated Newton (Усеченный Метод Ньютона) и про его реализацию с помощью библиотеки глубокого обучения — TensorFlow. Он использует преимущества методов оптимизации второго порядка и при этом нет необходимости считать матрицу вторых производных. В данной статье описан сам алгоритм HF, а так же представлена его работа для обучения сети прямого распространения на MNIST и XOR датасетах.
Недавно стало известно, что Google (корпорация добра) занимается анализом видеоизображений с военных дронов. Этот проект называется Project Maven и был предложен в апреле 2017 года. Что интересно, сотрудничество с Google в этом проекте организовывал сам Эрик Шмидт, бывший председатель совета директоров Alphabet, и нынешний председатель Совета по оборонным инновациям DIB.
В этой статье я хочу поделиться несколькими удобными способами организации вашего проекта на рабочем (даже продакшен) сервере.
Я работаю, в основном, с Python/Django стеком, поэтому все примеры будут, в первую очередь, применительно к этому набору. Также ключевые технологии: Ubuntu (17.10), Python3 (3.6).
Скрытые марковские модели (Hidden Markov Models) с давних времен используются в распознавании речи. Благодаря мел-кепстральным коэффициентам (MFCC), появилась возможность откинуть несущественные для распознавания компоненты сигнала, значительно снижая размерность признаков. В интернете много простых примеров использования HMM с MFCC для распознавания простых слов.
После знакомства с этими возможностями появилось желание опробовать этот алгоритм распознавания в музыке. Так родилась идея задачи классификации музыкальных композиций по исполнителям. О попытках, какой-то магии и результатах будет рассказано в этом посте.