Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Цель этой статьи — предоставить легкое введение в анализ данных с использованием Anaconda. Мы пройдем через написание простого скрипта Python для извлечения, анализа и визуализации данных по различным криптовалютам.
В этой статье я хочу показать процесс создания бота от написания BotFather-у до деплоинга бота на Heroku.
Статья получилась длинной, советую пробежаться глазами по содержанию и пролистать к интересующему вас пункту.
Это четырнадцатая часть Мега-Учебника Flask,k, в которой я собираюсь добавить функцию перевода текста в реальном времени, используя службу перевода Microsoft и немного JavaScript.
Коэффициент Джини (Gini coefficient) — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там.
Написание ботов не такая простая задача, как кажется. Необходимо учесть сценарии использования, пройти через дебри настроек и отладки, наладить мониторинг.
Мы консультируем по написанию ботов - обращайтесь https://t.me/axsapronov. Подскажем как разработать бота наиболее быстро
Не так давно было объявлено о включении Visual Studio Code в дистрибутив Anaconda, что несомненно является большим шагом в развитии инструментов анализа данных с открытым исходным кодом.
Anaconda, основанная Трэвисом Олифантом, автором NumPy, стала неотъемлемым инструментом в области работы с данными, имеющая в своем арсенале большое количество библиотек и плагинов, которые охватывают большинство аналитических случаев. Поскольку Python является интерпретированным языком, с поддержкой REPL, вы можете тестировать фрагменты кода из командной строки, работать с источниками данных перед запуском более сложных скриптов.