Собрали в одном месте самые важные ссылки
читайте нас в Twitter
PyTest — отличный пакет для тестирования на Python, и с давних пор один из моих любимых пакетов в целом. Он значительно облегчает написание тестов и обладает широкими возможностями по составлению отчетов о непройденных тестах.
Тем не менее, на момент версии 2.7, он менее эффективен в тестировании (asyncio) подпрограмм. Поэтому не стоит пытаться их тестировать таким способом:
PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.
Итак, на протяжении уже нескольких лет я в свободное время копошусь в вопросах, связанных с освещением и больше всего мне интересны спектры разных источников света, как «пращуры» производных от них характеристик. Но не так давно у меня совершенно случайно появилось еще одно хобби — это машинное обучение и анализ данных, в этом вопросе я абсолютный новичок, и чтобы было веселей делюсь периодически с вами своим обретенным опытом и набитыми «шишками»
В предыдущей части я рассказывал о создании модуля для запуска SQL-запросов и оболочки, в которой эти модули запускаются. После недолгой работы с запросами возникает очевидный вопрос — а как воспользоваться результатом выборки, кроме как посмотреть на экране?
Для этого стоит сделать дополнительные инструменты экспорта и копирования данных. Экспортировать будем в файл в формате Excel, а копировать в системный буфер в формате HTML.
Суть идеи заключается в том, что есть земельные участки на которых можно строить только частные жилые дома (Индивидуальное жилое строительство), и при этом запрещается использовать эти помещения для коммерческой деятельности. Хотя в России это никого не останавливало, и получается, что сотрудники должны ходить и проверять, что дом построен как жилой, а используется как ларек. В итоге ходить нужно долго и много плюс постоянно нужен доступ к информации для уточнения что же это за дом. Ну или же в офисе выбирать адреса для проверки и потом запрячь верблюдов, пополнить запасы воды и отправляться в удивительное путешествие.
В моих публикациях [1,2] экономические задачи рассматривались в статике без учёта времени. В задачах оптимизации экономической динамики анализируются изменение экономических параметров и их взаимосвязей во времени. В моделях экономической динамики время может рассматриваться как дискретное изменяющееся скачком, например, за год. Для описания таких процессов используются разностные уравнения. При непрерывном изменении во времени для описания параметров модели используются дифференциальные уравнения.
Это заметка о том, что на основании алгоритма генерации спектров (о котором было рассказано в статье «Спектроскоп Салтана...») создан тестовый сервис, обратиться к которому может любой желающий.
Коротко о свежем PEP 551, которое проходит обсуждение в данный момент
Совсем недавно вышла новая версия 0.34 библиотеки оптимизирующего JIT компилятора Numba для Python. И там ура! появилась долгожданная семантика аннотаций и набор методов для организации параллельных вычислений. За основу была взята технология Intel Parallel Accelerator.
В данной статье я хочу поделиться результатами первого тестирования скорости вычислений на основе этой библиотеки для некоторой современной машины с четырехядерным процессором.
Хочу предоставить твоему вниманию свой проект для юнит-тестирования. Точнее — инструмента, чтобы задуматься о тестах получше, вместо траты лишнего внимания на создание файлов, объявления импортов, классов и тест-кейсов.
В статье можно найти описание проекта, как его установить и пользоваться, и примеры.