Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Разбираясь со Spark Apache, столкнулся с тем, что после достаточно небольшого усложнения алгоритмов подготовки данных расчеты стали выполняться крайне медленно. Поэтому захотелось реализовать что-нибудь на C# и сравнить производительность с аналогичным по классу решением на стеке python (pandas-numpy-skilearn). Аналогичным, потому что они выполняются на локальной машине. Подготовка данных на C# осуществлялась встроенными средствами (linq), расчет линейной регрессии библиотекой extremeoptimization.
Немного людей которые никогда не играли в настольные экономические игры, такие как монополия, рынок, миллионер. Мы с друзьями играли в них дни на пролёт. Со временем, после зазубривания всех правил, и десятков сыгранных партий, хотелось чего-то большего. И мы начали рисовать игры сами. Сначала маленькие, и в большей степени копирующие возможности тех игр, что мы выдели раньше, но потом приходили и свои идеи. В конце доходило до того, что игра располагалась на 9 листах формата А4, а её правила были настолько нетерпимыми к новичкам, что кроме нас никто не мог научиться в неё играть (хотя в монополию со мной играли родители). Там было много всего, строительство, экономика, игровое взаимодействие (например подставы или взаимопомощь). Десятки видов оружия, машин. Чтобы стрелять нужны были патроны. С некоторыми ранениями можно было продолжать играть, с другими путь в больницу, и т.п.
Хочу поделиться опытом портирования проекта с Python 2.7 на Python 3.5. Необычными засадами и прочими интересными нюансами.
Обычно в статьях про финтех пишут о том, как работают биржи, которые обрабатывают огромные объемы данных на огромных скоростях, о том, как гениальные трейдеры и кванты используют отточенные алгоритмы, чтобы зарабатывать (или терять, бывает всякое) миллиарды долларов, или о работе блокчейна, обеспеченной сложными математическими выкладками. Все это создает впечатление, будто уровень входа в финтех-разработку запредельно высок. И отчасти оно правдиво — требования к разработчикам высоконагруженных финансовых приложений строги и специфичны.
Но все начинали с малого, и мы считаем, что любой заинтересованный человек способен создать приложение в финансовой сфере. Попробуем разработать собственное небольшое приложение, которое станет полезным для пользователей уже через полчаса.
Это краткое руководство и обучение по фронтэнеду для бэкендера. В данном руководстве я решаю проблему быстрого построения пользовательского интерфейса к серверному приложению в виде одностраничного веб-приложения (single page app).
Elizabeth — это библиотека для языка программирования Python, которая помогает генерировать фиктивные данные. Один из простейших примеров использования библиотеки — это заполнение баз данных для приложений на Flask или Django. На данный момент библиотека поддерживает 16 языковых стандартов и 18 классов-провайдеров, предоставляющих разного рода данные.
На днях дочитал книгу Лучано Рамальо «Python. К вершинам мастерства». Пожалуй, это лучшая техническая книга, которая мне попадалась за последние время. Это объемная книга, содержащая 768 страниц, но при этом читается она достаточно легко. Сразу надо сказать, что книга Рамальо — не учебник для начинающих, вы уже должны знать Python хотя бы на начальном уровне, представлять себе, что такое объектно-ориентированное программирование и иметь хотя бы общее представление о шаблонах проектирования.