Собрали в одном месте самые важные ссылки
консультируем про IT, Python
В своей предыдущей статье я исследовал структуру PyObject и её роль в качестве заголовка для всех объектов среды исполнения CPython. Эта структура играет важнейшую роль в обеспечении наследования и полиморфизма в системе объектов CPython. Но это лишь вершина айсберга.
В этой статье мы опустимся на один уровень ниже и посмотрим, что же происходит внутри среды исполнения Python для выполнения простого действия a + b. Иными словами, мы узнаем о подробностях реализации типов, операторов и динамической диспетчеризации в CPython.
Одной из областей применения ИИ сегодня является автоматизация контроля за сотрудниками. В данном посте мы рассмотрим приложение технологий ML к задаче детектирования спящих людей (в частности, охранников на рабочем месте) по видеозаписям камер наблюдения.
In this tutorial, you'll explore the process of creating a boilerplate for a Flask web project. It's a great starting point for any scalable Flask web app that you wish to develop in the future, from basic web pages to complex web applications.
Данная статья рассчитана на специалистов области физических систем безопасности и в частности контроля доступа. Я предполагаю, что статья может быть интересна тем, кто не обладает навыками в программировании, но всегда хотел попробовать реализовать что-то здесь и сейчас, с возможностью непосредственно испытать свою работу на практике.
Learn how to write your own REPL by building on top of the one that comes with Python. With a few lines of code you can customize Python’s REPL environment as your own.
Мы разработали open-source библиотеку dedoc, которая помогает разработчикам и дата-сайентистам в пару строк кода читать различные форматы текстовых документов и изображений с текстом, и далее приводить информацию к единой аккуратной структуре.
На конец 2023 года язык программирования Python является самым популярным по индексу TIOBE. Что касается работы, то по количеству вакансий в мире язык Python занимает второе место (после JavaScript/TypeScript). Поэтому у соискателей на должность, где требуется Python, возникает потребность подготовки к собеседованиям.
Этот материал посвящён тому, как добавлять собственные данные в предварительно обученные LLM (Large Language Model, большая языковая модель) с применением подхода, основанного на промптах, который называется RAG (Retrieval‑Augmented Generation, генерация ответа с использованием результатов поиска).
Поддержка преобразования речи в текст была в OpenAI API уже давно, а вот из текста в речь, а также распознавание изображений было добавлено совсем недавно. В связи с чем продолжаю свою серию туториалов по разработке собственного ChatGPT бота в Telegram.
Phoenix — это библиотека с открытым исходным кодом, направленная на ML Observability, которую выпустили разработчики из Arize AI — компании, известной большим опытом в вопросах наблюдаемости ML систем.
Все мы знаем что такое клиент-серверное приложение, на тему их создания написано не мало статей. В этой статье хотелось бы поделиться с вами наработками нашей компании, которыми мы пользуемся в своих Django проектах.
Вчера мне потребовалось применить его в приложении, однако не удалось найти руководства, как сделать это быстро. Документация Яндекса хороша, но предполагает, что опыт работы с Yandex Cloud уже имеется. В отсутствие такого опыта документация выглядит фрагментированной.
А теперь о том, что происходило в последнее время на других ресурсах.
В этой статье на примерах рассмотрим новые возможности , которые были добавлены в этой версии.
In this episode, I worked through a couple of issues discovered after having the site be operational for real use. From there, we moved onto some fundamental technology and integrated WhiteNoise to handle static files for the application. After adding WhiteNoise, we hooked up Tailwind CSS.
Начальство загорелось внедрить нейронные сети на фермы. Об этом и пойдет повествование.
Обучение завершено успешно, но не было ощущения полноценности — на курсах не учили, как сделать самостоятельно деплой приложения на Django. И никто из студентов не задавался эти вопросом 😁Так что я решил закрыть этот вопрос и все-таки пройти путь по развертыванию django-приложения.
Мы совместили системы обнаружения объектов и распознавания изображений для создания модели, классифицирующей детали конструктора Lego Technic в реальном времени. В этой статье я расскажу о том, с какими сложностями столкнулся наш проект, и как мы довели его до успешного завершения.