Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Идея делать нормальный REST на Django – утопия, но некоторые моменты настолько логичные и нет одновременно, что об этом хочется писать. Ниже история про то, как мы сделали ViewSet от GenericViewSet и пары миксинов в DRF, покрыли это все тестами и получили местами странные, но абсолютно обоснованные коды ответов.
Текст может быть полезен новичкам (или чуть более прошаренным) в Django, дабы уложить в голове формирование url’ов и порядок вызова методов permission-классов. Ну а бывалые скажут, что все это баловство и надо было использовать GenericApiView.
Всё началось с голосовых роботов. Во время борьбы с Ковидом наш коллцентр, носящий теперь гордое имя Центр телефонного обслуживания граждан 122, все чаще и чаще выстраивал очереди со временем ожидания ответа оператора свыше 30 минут. Нанять больше людей и начать стабильно укладываться в норматив ответа оператора менее 3-х минут не позволяли размеры помещения и фонда оплаты труда.
Я очень люблю визуализации. Человек лучше всего воспринимает информацию через образы. Для трех часто встречающихся баз (MSSQL, Postgres и MySQL) я смастерил плагины к проекту Bell, хотя этот код на Python можно использовать и отдельно. Поэтому для каждой визуализации я буду в скобочках писать имя файла из репозитория GitHub - вы можете этот файл вытащить и использовать его отдельно от проекта (для этого нудны минимальные модификации).
В этой статье хочу рассказать о том, как написать полезный сервис, для получения ИНН по персональным данным (паспортные данные). ИНН физического лица получаем с использование сайта https://service.nalog.ru/. Похожая функциональность, скорее всего, уже где-то и кем-то была реализована. Основная идея статьи - поделиться опытом работы с Python в части создания законченного проекта с использованием контейнера зависимостей, создания слушателей для RabbitMQ и работой с базой данных MongoDB. Работа с клиентами сервиса реализована через RabbitMQ в режиме непрерывного чтения очереди, отправкой результата в выходную очередь. Сервис будет жить в Kubernetes, что требует наличие liveness и readiness проб. Для этого используется веб-сервер.
В предыдущих обзорах (https://habr.com/ru/articles/690414/, https://habr.com/ru/articles/695556/) мы рассматривали линейную регрессию. Пришло время переходить к нелинейным моделями. Однако, прежде чем рассматривать полноценный нелинейный регрессионный анализ, остановимся на аппроксимации зависимостей.
Я написал первые четыре главы мини-учебника «Ядро планеты Python», где постарался коротко, но достаточно ёмко раскрыть специфику, удобство и силу этого прекрасного языка. Оригинал учебника лежит на GitHub, вы вольны сколько угодно дополнять и переделывать его. Самое главное — учебник написан на Jupiter Notebook, а это значит, что вы можете интерактивно редактировать код, мгновенно добавляя новые сущности или проясняя непонятные моменты. Читать дальше →
Иногда говорят, что код имеет запах. Это относится к стилистике написания, выбору переменных и т.п. Однако, когда речь идет про циклы, я предпочитаю использовать термин «недо-yield», характеризующий стиль работы программиста в циклах и с массивами данных.
Я студент и увидел, что Тинькофф выплачивает целых 25 тысяч рублей студентам каждый месяц, но надо пройти некий отбор. По описанию на сайте быстро становится понятно, что отбор на самом деле - некий аналог олимпиадных задач. И тут я вспомнил про ChatGPT, и мне стало интересно, если бы я был практически полным нулем в программировании, смог бы я получить стипендию, используя нейросеть?
В апреле 2023 года вышла новая LTS-версия Django Web Framework, одного из самых популярных фреймворков для веб-разработки на Python.«Вышла новая версия! Почему вы до сих пор не перешли на неё?» — такой вопрос часто возникает у студентов, изучающих этот фреймворк на курсах программирования. Аналогичный вопрос можно услышать и от начинающего специалиста, который недавно приступил к выполнению своих обязанностей в качестве бэкенд-разработчика.А стоит ли сейчас вообще начинать новый проект на Django или изучать этот фреймворк? В этой статье я, Евгений Бартенев, техлид и автор курса «Python-разработчик», помогу разобраться с этими и другими вопросами. Мы поговорим о разных типах релизов Django, посмотрим на главные изменения в новом и затронем основные аспекты, которые следует учитывать при обновлении версии Django в проекте.
Мы обсуждали отличия языков Python и Go, подробно разобрали работу с протоколом syslog и почти написали свой Docker. Если вам интересны эти темы — заходите под кат, там вы найдёте видеозаписи докладов, презентации спикеров и небольшой фотоотчёт.
В этой статье представлен простой алгоритм автоматического сшивания нескольких фотографий в плоское (иногда называют перспективное) панорамное изображение (planar/perspective panoramic image). Статья содержит код на языкеPythonс использованием библиотекиOpenCV.
Эта статья посвящена написанию приложения на Python для интерактивной визуализации графов. В первой части представлен краткий обзор использованных средств и библиотек, а также свойства приложения. Во второй половине — технические детали, касающиеся использования NetworkX, Plotly и Dash, и собственно код.
В этой статье мы обсудим простенький и относительно не извращённый способ сохранения информации о своей семье при помощи скриптов на Python. Для этого мы будем использовать модуль Diagrams.
У меня, как и у многих, часто всплывает потребность в том чтобы «разложить по полочкам» кучу разных текстов. Например:1. Я хочу знать, о чем вообще все отзывы в маркете про мой продукт.2. У меня есть много писем от клиентов на разные темы, и я хочу их систематизировать.3. Мне может понадобиться проанализировать старые обращения пользователей в техподдержку, которые не были размечены.
В современном мире данных анализ временных рядов играет ключевую роль во многих отраслях, таких как финансы, розничная торговля, производство и маркетинг. Работа с временными рядами может стать сложным процессом из- за наличия трендов, сезонности и структурных изменений в данных.Я продолжаю рассказывать о полезных, но менее известных методах работы с данными в Pandas, которые могут значительно повысить вашу эффективность при анализе и обработке данных. По данной ссылке вы можете прочитать первую статью.В этой статье мы погрузимся в применение скользящих окон для вычислений и смещение данных для анализа временных рядов. Скользящие окна позволяют проводить агрегированные вычисления на подмножествах данных, что может быть полезно для определения трендов, сезонности и аномалий во временных рядах. Мы также изучим использование смещения данных для создания лаговых переменных и их применение в различных задачах прогнозирования.
Многие расширения (модули) Python поставляются в виде платформонезависимого байт-кода и могут быть использованы в системах с любой архитектурой. Однако, в некоторых случаях расширения поставляются в виде Py-исходников лишь частично. Например, часть внутренних функций может быть реализована на Си и для обеспечения работоспособности всего расширения потребуется их предкомпиляция для каждой требуемой архитектуры. В контексте ОС «Нейтрино» перечень последних достаточно широк.