Собрали в одном месте самые важные ссылки
читайте нас в Telegram
You have a file with data you want to process with Pandas, and you want to make sure you won’t run out of memory. How do you estimate memory usage given the file size? At times you may see estimates like these: “Have 5 to 10 times as much RAM as the size of your dataset”, or “several times the size of your dataset”, or 2×-3× the size of the dataset. All of these estimates can both under- and over-estimate memory usage, depending on the situation. In fact, I will go so far as to say that estimating memory usage is just not worth doing. In particular, this article will: Demonstrate the very broad range of memory usage you will see just from loading the data, before any processing is done. Cover alternative approaches to estimation: measurement and streaming.
Ultralytics недавно выпустила семейство моделей обнаружения объектов YOLOv8. Эти модели превосходят предыдущие версии моделей YOLO как по скорости, так и по точности в наборе данных COCO. Но как насчет производительности на пользовательских наборах данных? Чтобы ответить на этот вопрос, мы будем обучать модели YOLOv8 на пользовательском наборе данных. В частности, мы будем обучать его на крупномасштабном наборе данных для обнаружения выбоин.
В статье хочу поговорить на тему «качества кода» — а именно об инструментах, которые помогают выявлять потенциальные ошибки и другие проблемы как можно раньше, в идеале еще до того, как они попадут в кодовую базу, не говоря уже о попадании в релиз.
Однажды, зайдя в чат дома между катками доты, я увидел бота, который дает возможность кикать пользователей путем голосования в чате. Нехитрое изобретение. Решив повторить тогда я впервые познакомился с Telegram Bot API. В частности с библиотекой telebot. И тут первое что хотел бы отметить. На момент написания того самого первого бота, в данной библиотеке использовалась функция polling(), для поддержки бота в сети при простое. Однако она была не идеальной и через буквально 10 минут простоя бот всё же полностью терял соединение и не принимал запросы.
За всё время мы тысячу раз сталкивались с запросом “дайте какое-нибудь простое решение с API, которым нам можно было бы пользоваться”. Дело, конечно, хорошее, но функциональность у нашей системы очень богатая. Единый API, который подходил бы всем нашим заказчикам со своими разными задачами и разными сценариями использования, был бы переусложнен. В этой статье мы покажем пример того, как с помощью Docker, Python и нашего SDK самому реализовать простейшее решение для распознавания документов.
Python Дайджест собирает IT-новости уже 9 лет, рассказывает о концепциях, проектах, релизах. Кодовая база за это время мало изменилась и уже деградировала. Более 5 лет не хватало сил и времени, чтобы привести проект в актуальное состояние. Django с 1.9 обновилась уже до 4.1 версии, Python 3.4 не актуален, да даже обновить пакет через pip не получается, потому что сломан. В 4 частях расскажу от первого лица, как 9-летний проект из состояния outdated вернулся в actual состояние и снова набрал 100 баллов в PageSpeed. Начну с обновления до актуального Python и Django.
Я хочу показать, как компилировать бинарные модули расширения (.so) из python-файлов, чем они будут отличаться и как с ними работать. Делать это мы будем при помощи компилятора Nuitka. Он наиболее известен тем, что с его помощью можно создавать исполняемые файлы (.exe) для Windows. Однако, кроме того, он позволяет создавать и бинарные модули python. Всех, кому это интересно, прошу под кат.
В сфере data science подготовка данных является обязательным этапом работы перед построением моделей. Один из них — кодирование категориальных данных, т.к. значимая часть информации в реальной жизни относится именно к категориальным строковым значениям, а подавляющее большинство моделей умеют работать исключительно с числовыми значениями. Кодирование — это и есть процесс преобразования категориальных данных в числовой формат.
Это первая статья из серии статей, в которой описывается опыт написания с нуля библиотеки на питоне, для расчета как можно более широкого спектра деловых, производственных, организационных задач методами теории игр.
В этой статье я хочу написать про мой опыт взаимодействия с платформой LeetCode, и описать свою подготовку к интервью в FAANG подобные компании путем разбиения ее на уровни.А какой у вас уровень?
Подходы использования import в языке программирования Python.Статья направлена на освящение подходов импортирования в Python для начинающих программистов. Она так же может быть полезна для уже имеющих опыт в разработке на данном языке программирования.
"Камень, ножницы, бумага" - кто из нас не играл в эту игру в детстве? Но вы когда-нибудь задумывались о том, что стратегии, которые мы выбирали, на самом деле могут быть смоделированы в с помощью Теории игр?
Я работаю в авиакомпании, занимаюсь анализом продаж, что сильно связано в том числе с планированием и прогнозированием. В условиях, когда российский рынок авиаперевозок сужается, авиакомпании стремятся оптимизировать свою маршрутную сеть, а если и развиваться - то только на направлениях с высоким пассажиропотоком. Дефицит самолетов в условиях санкций делает ошибки непростительными, поэтому своей целью я ставил разработку модели прогнозирования трафика между городами РФ.
Сегодня я постараюсь объяснить, что такое асинхронное программирование, зачем оно нужно, какие задачи решает и как ему научиться. Так как мой основной язык — Python, то и материал будет Python-ориентированным.
Про карточку "Сарказм" не забудьте.
В июле и августе 1991 года я, с подачи Гвидо Ван Россума, проводил технические интервью на позицию Middle Python Backend developer. И, видимо, буду вынужден продолжать проводить, о чём ниже.
Задача формулировалась как «найти человека, который сможет задать и поддерживать высокий уровень профессионализма в применении языка Python». Под эту задачу я сформировал новый опросник вместо того, которым пользовался несколько дней — старый имел слишком жесткий закос под промышленное программирование.
И вот что я хочу сказать вам, коллеги: вы меня огорчаете.
Диффузионные модели могут значительно расширить мир творческой работы и создания контента в целом. За последние несколько месяцев они уже доказали свою эффективность. Количество диффузионных моделей растет с каждым днем, а старые версии быстро устаревают
Вышедшая чуть больше месяца назад ChatGPT уже успела нашуметь: школьникам в Нью-Йорке запрещают использовать нейросеть в качестве помощника, её же ответы теперь не принимаются на StackOverflow, а Microsoft планирует интеграцию в поисковик Bing - чем, кстати, безумно обеспокоен СЕО Alphabet (Google) Сундар Пичаи. Настолько обеспокоен, что в своём письме-обращении к сотрудникам объявляет "Code Red" ситуацию. В то же время Сэм Альтман, CEO OpenAI - компании, разработавшей эту модель - заявляет, что полагаться на ответы ChatGPT пока не стоит.Насколько мы действительно близки к внедрению продвинутых чат-ботов в поисковые системы, как может выглядеть новый интерфейс взаимодействия, и какие основные проблемы есть на пути интеграции? Могут ли модели сёрфить интернет бок о бок с традиционными поисковиками? На эти и многие другие вопросы постараемся ответить под катом.
Как создать и отслеживать многозадачное обучение с независимыми моделями на одном входе и на одном выходе. Полный код на GitHub, соблюдая инструкцию README.md с нуля установки до работающего запуска отслеживания экспериментов и обслуживания моделей
Как работают интерпретаторы и что такое "виртуальная машина" в этом контексте. И как ускорить исполнение.