Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
(20.02.2017 - 26.02.2017)
В статье рассмотрены возможности Google Slider API для создания презентаций
Статья описывает как использовать Deep Learning техники для написания интеллектуальных ботов для игр
Обзорная статья про возможности разных CI систем
Приветствую тебя %username%. Прочитав статью о способах обхода sudo, решил тоже попробовать описать нечто подобное, но для языка Python. Спасибо root-me за такие задачки. Решая их, можно многое узнать о работе того или иного механизма. Прошу строго не судить, это моё первое творение.
Начнём!
Data Science — это совокупность понятий и методов, позволяющих придать смысл и понятный вид огромным объемам данных.
Каждая из глав этой книги посвящена одному из самых интересных аспектов анализа и обработки данных. Вы начнете с теоретических основ, затем перейдете к алгоритмам машинного обучения, работе с огромными массивами данных, NoSQL, потоковым данным, глубокому анализу текстов и визуализации информации. В многочисленных практических примерах использованы сценарии Python.
Мне выпала честь сделать первый пост, и я, пожалуй, отклонюсь от своей привычной нейросетевой тематики и сделаю пост о базовых понятиях машинного обучения на примере одной из самых простых и самых полезных моделей — линейной регрессии. Я буду использовать язык питон для демонстрации экспериментов и отрисовки графиков, все это вы с легкостью сможете повторить на своем компьютере. Поехали.
В пилотной части я рассказал о задаче как можно подробнее. Рассказ получился долгим и беспредметным — в нем не было ни одной строчки кода. Но без понимания задачи очень сложно заниматься оптимизацией. Конечно, некоторые техники можно применять, имея на руках только код. Например, кешировать вычисления, сокращать ветвления. Но мне кажется, что некоторые вещи без понимания задачи просто никогда не сделать. Это и отличает человека от оптимизирующего компилятора. Поэтому ручная оптимизация все еще играет огромную роль: у компилятора есть только код, а у человека есть понимание задачи. Компилятор не может принять решение, что значение "4" достаточно случайно, а человек может.
Короткая статья, которая поможет настроить Sublime Text для более-удобного написания Python кода
В статье рассматривается, как делать QuerySet'ы с фильтрами по времени.
Проект-платформа для извлечения информации из видео
Модуль для работы с многомерными массивами. Изменения описаны по ссылке https://allmychanges.com/p/python/numpy/#1.12.1. Скачать можно по ссылке: http://pypi.python.org/pypi/numpy/
http клиент/сервер для asyncio. Изменения описаны по ссылке https://allmychanges.com/p/python/aiohttp/#1.3.2. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
PYтокен: история о том, как питон съел ЭЦП. Часть 2
Дискретное преобразование Фурье в живых картинках для девятиклассников
Викторина: Использование встроенных тегов в Django
Ищем похожие иероглифы при помощи искусственного интеллекта
Сводка от pythonz 25.05.2025 — 01.06.2025
Как Python помогает восстанавливать древние фрески: алгоритмы цифровой реставрации
Всё об устройстве и работе SSTV с примерами на Python
Writing your own CUPS printer driver in 100 lines of Python (2018)
Pyrefly vs. ty: Comparing Python’s Two New Rust-Based Type Checkers
LibrePythonista - Python in LibreOffice