Собрали в одном месте самые важные ссылки
читайте авторский блог
Python генератор документации. Скачать можно по ссылке: https://pypi.python.org/pypi/Sphinx/
(24.07.2017 - 30.07.2017)
Когда-то в школе мне казалось, что писать стихи просто: нужно всего лишь расставлять слова в нужном порядке и подбирать подходящую рифму. Следы этих галлюцинаций (или иллюзий, я их не различаю) встретили вас в эпиграфе. Только это стихотворение, конечно, не результат моего тогдашнего творчества, а продукт обученной по такому же принципу нейронной сети.
На прошлой неделе журнал IEEE Spectrum опубликовал интерактивный рейтинг языков программирования. Давайте узнаем, на каком месте Python.
В предыдущей статье рассмотрен мониторинг скорости открытия Веб ресурсов. В качестве параллельного процесса при измерении скорости, для более глубокого понимания возможных причин низкой скорости открытия Веб страниц, было бы интересно провести измерение TCP аномалий. Эту задачу попробуем решить в этой статье.
TCP аномалиями будем считать пакеты, которые свидетельствуют о потери информации в процессе передачи. Пожалуй, наиболее популярным инструментом глубокого анализа сетевого трафика, является утилита Wireshark и ее консольная версия tshark. Поэтому в качестве исходного анализатора будем рассматривать именно ее.
В данной статье я хочу рассказать о замечательной Python-библиотеке Spyne.
Мое знакомство с Spyne началось в тот момент, когда передо мной поставили задачу написать Веб-сервис, который будет принимать и отдавать запросы через SOAP-протокол. Немного погуглив я наткнулся на Spyne, которая является форком библиотеки soaplib. А еще я был удивлен, насколько мало русскоязычной информации встречается о данной библиотеке.
В этой статье будет продемонстрирована техника обработки информации по биржевым котировкам с помощью пакета pandas (python), а также изучены некоторые «мифы и легенды» биржевой торговли посредством применения методов математической статистики. Попутно кратко рассмотрим особенности использования библиотеки plotly.
Проверка IFC моделей по требованиям IDS
Компилятор за выходные: синтаксический анализатор Уорли
Простые лайфхаки для автоматизации работы с помощью Python
Poetry vs UV: удобство или скорость?
Python Bytes: #420 90% Done in 50% of the Available Time
Инновации в тестировании САПР: путь к созданию автоматизированного решения для тестирования
Простыми словами о методе максимального правдоподобия и информации Фишера
Смогу ли я уложить оптимизирующий компилятор в тысячу строк питона? Прогон первый: mem2reg
Автомодерация изображений: как исправлять нарушения, сохраняя количество и качество контента
Сводка pythonz 09.02.2025 — 16.02.2025
Как создать скрипт-beautifier в Ghidra на Python?
Порядок работы с устареванием ML моделей. Шаг 2: Создание надежных и долговечных моделей