Собрали в одном месте самые важные ссылки
читайте нас в Twitter
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
(21.08.2017 - 27.08.2017)
Всем привет, в этом посте я расскажу о том, как мне удалось занять 11 место в конкурсе от компании Мерседес на kaggle, который можно охарактеризовать как лидера по количеству участников и по эпичности shake-up. Здесь можно ознакомиться с моим решением, там же ссылка на github, здесь можно посмотреть презентацию моего решения в Yandex
Все знают, что тесты крайне важны для быстрого создания качественного ПО. Но, как и всё остальное в нашей жизни, при неправильном использовании они могут принести больше вреда, чем пользы. Рассмотрим следующую несложную функцию и тест. В данном случае автор хочет защитить тесты от внешних зависимостей, поэтому используются заглушки.
Для удобного взаимодействия с нашим сервисом Виртуальное приватное облако мы разработали библиотеку selvpcclient. Она написана на языке Python и покрывает весь API, благодаря чему вы можете управлять проектами, квотами, ресурсами из своего программного кода или консоли.
Мобильные операторы, предоставляя разнообразные сервисы, накапливают огромное количество статистических данных. Я представляю отдел, реализующий систему управления трафиком абонентов, которая в процессе эксплуатации у оператора генерирует сотни гигабайт статистической информации в сутки. Меня заинтересовал вопрос: как в этих Больших Данных (Big Data) выявить максимум полезной информации? Не зря ведь одна из V в определении Big Data — это дополнительный доход.
Есть такой шаг в развитии языка, когда его компилятор написан на нем же.
Чтобы доказать крутость библиотеки trafaret я тоже решил сделать что-то такое же
рекурсивненькое, где надо идти глубже.
Напишем на трафарете парсер Json Schema, который на выходе вернет
готовый трафарет для проверки документов в соответствии с данным описанием.
То есть некий объект типа Trafaret, если ему скормить корректный документ json schema
на выходе вернет объект типа Trafaret, которому можно кормить документы
соответствующие описанию.
На днях, по мотивам очередной статьи, посвященной проблеме расизма в распознавании речи, я участвовала в большом споре о том, кто в этом виноват. Часть людей была уверена, что это заговор программистов. На самом деле, правда кроется в данных, которые ИИ использует для своего обучения. Я решила провести эксперимент, чтобы наглядно доказать это. Оказалось, что Роб Спир (Rob Speer) уже все сделал за меня.
Я хотел бы рассказать о том, как создал проект по распознаванию рукописного ввода цифр с моделями, которые дообучаются на нарисованных пользователями цифрах. Используется две модели: простая нейронная сеть (FNN) на чистом numpy и сверточная сеть (CNN) на Tensorflow. Вы сможете узнать, как сделать практически с нуля следующее..
Мне нужен был инструмент. Острый, практичный, универсальный. Отвечающий всем моим требованиям и расширяемый по моему желанию.
Но простой и удобный. Тут надо отметить, что на основной работе я не разработчик, поэтому постоянной среды программирования на рабочем компе не имею и, когда это требуется, пишу на чем придется — bat, JScript, VBA в MSOffice (да, это Windows, корпоративные системы, тут нет bash и perl «из коробки»), макросы в разном ПО и т.д. Все это помогает решить текущую задачу, но уровень и возможности маленько не те, что хотелось бы иметь.
Короче, мне нужна интегрированная среда со встроенным языком программирования, в которой я мог разбирать и конвертировать файлы, лазить в базы данных, получать отчеты, вызывать веб-сервисы, плодить запросы в джире и т.д., и т.п.
Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.
Написал таки заметку, о которой думал 3 месяца. Надеюсь она поможет человекам улучшить их английский в части восприятия речи.
Одна из главных проблем при написании крупных (относительно) программ на Python — минимизация потребления памяти. Однако управлять памятью здесь легко — если вас вообще это волнует. Память в Python выделяется прозрачно, управление объектами происходит с помощью системы счётчиков ссылок (reference count), и память высвобождается, когда счётчик падает до нуля. В теории всё прекрасно. А на практике вам нужно знать несколько вещей об управлении памятью в Python, чтобы ваши программы эффективно её использовали. Первая вещь, надо хорошо в ней разбираться: размеры основных объектов в Python. И вторая вещь: как устроено управление «под капотом» языка.
Решил написать о применении нейронных сетей в совсем не традиционной для них сфере: аутентификация. Это лежит вне задач машинного обучения, и то от чего в ML пытаются избавиться — тут поощряется.
Инструмент для снижения трат на использование zoom сервиса
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch
Мой первый и неудачный опыт поиска торговой стратегии для Московской биржи