Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
(28.08.2017 - 03.09.2017)
В предыдущей части я рассказывал о создании модуля для запуска SQL-запросов и оболочки, в которой эти модули запускаются. После недолгой работы с запросами возникает очевидный вопрос — а как воспользоваться результатом выборки, кроме как посмотреть на экране?
Для этого стоит сделать дополнительные инструменты экспорта и копирования данных. Экспортировать будем в файл в формате Excel, а копировать в системный буфер в формате HTML.
В моих публикациях [1,2] экономические задачи рассматривались в статике без учёта времени. В задачах оптимизации экономической динамики анализируются изменение экономических параметров и их взаимосвязей во времени. В моделях экономической динамики время может рассматриваться как дискретное изменяющееся скачком, например, за год. Для описания таких процессов используются разностные уравнения. При непрерывном изменении во времени для описания параметров модели используются дифференциальные уравнения.
Совсем недавно вышла новая версия 0.34 библиотеки оптимизирующего JIT компилятора Numba для Python. И там ура! появилась долгожданная семантика аннотаций и набор методов для организации параллельных вычислений. За основу была взята технология Intel Parallel Accelerator.
В данной статье я хочу поделиться результатами первого тестирования скорости вычислений на основе этой библиотеки для некоторой современной машины с четырехядерным процессором.
Коротко о свежем PEP 551, которое проходит обсуждение в данный момент
Это заметка о том, что на основании алгоритма генерации спектров (о котором было рассказано в статье «Спектроскоп Салтана...») создан тестовый сервис, обратиться к которому может любой желающий.
Суть идеи заключается в том, что есть земельные участки на которых можно строить только частные жилые дома (Индивидуальное жилое строительство), и при этом запрещается использовать эти помещения для коммерческой деятельности. Хотя в России это никого не останавливало, и получается, что сотрудники должны ходить и проверять, что дом построен как жилой, а используется как ларек. В итоге ходить нужно долго и много плюс постоянно нужен доступ к информации для уточнения что же это за дом. Ну или же в офисе выбирать адреса для проверки и потом запрячь верблюдов, пополнить запасы воды и отправляться в удивительное путешествие.
Хочу предоставить твоему вниманию свой проект для юнит-тестирования. Точнее — инструмента, чтобы задуматься о тестах получше, вместо траты лишнего внимания на создание файлов, объявления импортов, классов и тест-кейсов.
В статье можно найти описание проекта, как его установить и пользоваться, и примеры.
Видео со встречи сообщества PyNSK.
Докладчик: Иван Гребенщиков
О докладе:
Нагрузочное тестирование - это инструмент поиска границ возможностей вашего софта. Корректно изучить поведение системы под нагрузкой - непростая задача.
В докладе я расскажу об использовании yandex.tank с BFG и locustio для нагрузочного тестирования.
Слайды: https://www.slideshare.net/PyNSK/python-79202375
Видео со встречи сообщества PyNSK.
Докладчик: Александр Сапронов
О докладе:
Как показать релевантный текст для пользователя? Собрать данные, написать разные тексты, а потом написать кучу IF'ов?
В докладе я расскажу, как мы, в Welltory, делаем настройку контента под пользователя.
Поведаю о том, как content writer'ы могут писать 100 вариантов текстов на одно событие в системе.
И конечно, расскажу с чего начать вам.
Слайды: https://www.slideshare.net/PyNSK/ss-79202372
Слайды: http://proofit404.github.io/talks/homemade-debugger/slides/#/
Наверное, только очень талантливый программист не нуждается в средствах отладки. Поменять значение переменных, посмотреть шаг за шагом ход исполнения программы, разложить всё по полочкам будет тяжело без Pdb. О том, как эти инструменты устроены, какие внутренние механизмы Python VM задействуют и от каких ограничений платформы страдают, и будет мой доклад.
Слайды: https://nikiladonya.github.io/email.html
В b2b сфере популярный способ коммуникации и взаимодействия — это электронная почта. Поэтому программистам довольно часто приходится с ней работать. Об этом я и попробую рассказать, охватив аспекты интеграции, встраивания в поток, парсинга писем с помощью вездесущего Python.
Видео со встречи сообщества PyNSK.
Докладчик: Анатолий Щербаков
О докладе:
Софт для автоматизации бизнеса составляет значительную часть всего существующего на планете программного обеспечения. Рассмотрим требования к нему и особенности его разработки. Оценим, насколько Python для этого подходит, и облегчают ли фреймворки жизнь в кровавом энтерпрайзе.
Слайды: https://www.slideshare.net/PyNSK/python-django-79202374
Недавно github зарелизил новый инструмент для ревью пул реквестов. Теперь подобное улучшение коснулось и питон энтузиастов, во время обзора изменений можно быстро найти, например функцию чтобы уточнить какие изменения были в ней. В первоначальном посте был указан список языков для которых доступен данный инструмент, питон там тоже есть, но видимо что-то пошло не так и мы видим новость о поддержки этой возможности отдельно для нас .
Python интерфейс для MongoDB. Изменения описаны по ссылке https://allmychanges.com/p/python/pymongo/#2.9.5. Скачать можно по ссылке: http://pypi.python.org/pypi/pymongo/
Best Shift-Left Testing Tools to Improve Your QA
htmy: Async, Pure-Python Rendering Engine
statsmodels: Statistical Modeling and Econometrics in Python
markitdown: Convert Files and Office Documents to Markdown
Talk Python to Me: #490: Django Ninja
SVG-виджеты для tcl/tk. Финальный аккорд. Часть IV
Implementing Approximate Nearest Neighbor Search with KD-Trees
Пишем свой PyTorch на NumPy. Часть 1
Царство грибов. Симуляция мицелия на p5py. Битвы гифов. Часть первая
django-liveconfigs - управление настройками в django
Мэтчинг персонажей. Level Hard
Стратификация: как не облажаться с A/B тестами