IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
консультируем про IT, Python


Новый материал в ленте
  coverage - 7.6.10

Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/


Python Дайджест. Выпуск 194

(04.09.2017 - 10.09.2017)

поделиться выпуском 
Дайджест python,

Новости

  PEP 553 -- встроенный breakpoint()

Черновик PEP'а о внедрении нового ключевого слова - breakpoint, чтобы упростить код для дебага

Статьи

  Как победить расистский ИИ

В первой статье мы успели осознать, как легко и непринужденно ИИ впитывает человеческие предрассудки в логику своих моделей. Как я и обещала, выкладываю вторую часть перевода, в которой мы разберемся, как измерить и ослабить влияние расизма в ИИ с помощью простых методов.

Напомню: мы закончили на том, что наш классификатор считал идею пойти в итальянский ресторан в 5 раз лучше, чем в мексиканский.

  «Удивительный рост Питона»

Результаты небольшого исследования, проведённого большим сайтом, обнаруживают занимательную тенденцию.

  Тестируем асинхронный код с помощью PyTest (перевод)

PyTest — отличный пакет для тестирования на Python, и с давних пор один из моих любимых пакетов в целом. Он значительно облегчает написание тестов и обладает широкими возможностями по составлению отчетов о непройденных тестах.

Тем не менее, на момент версии 2.7, он менее эффективен в тестировании (asyncio) подпрограмм. Поэтому не стоит пытаться их тестировать таким способом:

  Какой язык программирования учить для работы с данными?

У начинающего специалиста по данным (data scientist) есть возможность выбрать один из множества языков программирования, который поможет ему быстрее освоить данную науку. 

Тем не менее, никто точно не скажет вам, какой язык программирования лучше всего подходит для этой цели. Ваш успех как специалиста в данной области будет зависить от множества факторов и сегодня мы постараемся их рассмотреть, а в конце статьи вы сможете проголосовать за тот язык программирования, который вы считаете наиболее подходящим для работы с данными.

  Учим робота готовить пиццу. Часть 2: Состязание нейронных сетей

В прошлой части, удалось распарсить сайт Додо-пиццы и загрузить данные об ингредиентах, а самое главное — фотографии пицц. Всего в нашем распоряжении оказалось 20 пицц. Разумеется, формировать обучающие данные всего из 20 картинок не получится. Однако, можно воспользоваться осевой симметрией пиццы: выполнив вращение картинки с шагом в один градус и вертикальным отражением — позволяет превратить одну фотографию в набор из 720 изображений. Тоже мало, но всё же попытаемся.

  Невероятный рост Python

Статья об росте использования языка

  AsyncIO для практикующего python-разработчика

Я помню тот момент, когда подумал «Как же медленно всё работает, что если я распараллелю вызовы?», а спустя 3 дня, взглянув на код, ничего не мог понять в жуткой каше из потоков, синхронизаторов и функций обратного вызова.

Тогда я познакомился с asyncio, и всё изменилось.

  ИИ для покера: как научить алгоритмы блефовать

О том как совершенствуется искусственный интеллект, можно судить по обычным играм. За последние два десятилетия алгоритмы превзошли лучших мировых игроков: сначала пали нарды и шашки, затем шахматы, «Своя Игра» (Jeopardy!), в 2015 году — видеоигры Atari и в прошлом году — Го.

Все эти успехи — про игры с информационной симметрией, где игроки имеют идентичную информацию о текущем состоянии игры. Это свойство полноты информации лежит в основе алгоритмов, обеспечивающих эти успехи, например, локальном поиске во время игры.

Но как обстоит дело с играми с неполной информацией?

Самым наглядный пример такой игры — покер. Чтобы на деле разобраться с этой игрой и алгоритмами решения этой задачи, мы организуем хакатон по написанию игровых ботов на основе машинного обучения. О том как научить алгоритмы блефовать и попробовать свои силы в покер, не трогая карты, под катом.

  Итерируемый объект, итератор и генератор

В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы на мой взгляд фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.

  Что за чёрт, Python

Недавно мы писали о забавных, хитрых и странных примерах на JavaScript. Теперь пришла очередь Python. У Python, высокоуровневого и интерпретируемого языка, много удобных свойств. Но иногда результат работы некоторых кусков кода на первый взгляд выглядит неочевидным.

Ниже — забавный проект, в котором собраны примеры неожиданного поведения в Python с обсуждением того, что происходит под капотом. Часть примеров не относятся к категории настоящих WTF?!, но зато они демонстрируют интересные особенности языка, которых вы можете захотеть избегать. Я думаю, это хороший способ изучить внутреннюю работу Python, и надеюсь, вам будет интересно.

  Использование Python для обработки в реальном масштабе времени информации от датчиков, работающих с Arduino

Цифровые и аналоговые датчики, подключенные к Arduino, генерируют большие объёмы информации, которая требует обработки в реальном масштабе времени [1]. 
В настоящее время данные от Arduino распечатывают из командной строки или отображают в графическом интерфейсе с запаздыванием. Поэтому данные в режиме реального времени и не сохраняются, что делает невозможным их дальнейший анализ. 
Данная публикация посвящена программному решению задачи хранения информации от датчиков, работающих с Arduino и её графическому представлению в реальном масштабе времени. В примерах используются широко известными датчиками, такими как потенциометр и датчик движения PIR.

  Как найти хорошего преподавателя английского языка, используя анализ данных.

Многие из программистов хотят выучить английский язык по ряду причин. Кто то посещает курсы в оффлайне, занимается с частным репетитором в свободное от работы время. Другие же предпочитают занятия в онлайн-режиме, без траты времени на дорогу. Да и найти подходящий вариант в этом случае не так уж сложно - поскольку сейчас рынок онлайн-образования растет весьма быстро и предоставляет варианты подходящие под Ваш вкус и кошелёк. Весьма вероятно что читатель знает о компаниях которые предлагают свои услуги в этом сегменте. Если вам подходят любой из вышеупомянутых вариантов - можете не читать дальше, иным же, знакомым с Python/Pandas/Seaborn и прочие радостями анализа и визуализации данных - добро пожаловать.

  PyTorch — ваш новый фреймворк глубокого обучения

PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.

  “Восстание МашинLearning” или совмещаем хобби по Data Science и анализу спектров лампочек

Итак, на протяжении уже нескольких лет я в свободное время копошусь в вопросах, связанных с освещением и больше всего мне интересны спектры разных источников света, как «пращуры» производных от них характеристик. Но не так давно у меня совершенно случайно появилось еще одно хобби — это машинное обучение и анализ данных, в этом вопросе я абсолютный новичок, и чтобы было веселей делюсь периодически с вами своим обретенным опытом и набитыми «шишками»