IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE


Новый материал в ленте
  Как квантовать LLM. Практическое руководство для начинающих

Рост числа параметров в LLM и других нейронных сетях создает проблему того, что запускать их может все меньшее количество людей. Это связано с тем, что запуск больших моделей требует наличие мощного оборудования, недоступное всем. 

Для решения этой проблемы разрабатываются различные виды оптимизации, позволяющие запускать крупные нейронные сети (в частности LLM) на менее мощном оборудовании. Одним из наиболее популярных подходов оптимизации LLM является квантизация.


Python Дайджест. Выпуск 204

(13.11.2017 - 19.11.2017)

поделиться выпуском 
Дайджест python,

Статьи

  Автоколебания и резонанс

Здравствуйте! В связи с вопросами читателей моей публикации [1] касательно условий возбуждения автоколебаний в механической системе, я решил описать явление возникновения и поддержания автоколебаний подробно, выделив основные области возникновения и применения автоколебаний. В википедии автоколебания объясняют так [2]: Незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы. При этом частота становится почти равной резонансной.

  Классификация на гуманитариев и технарей по комментариям в VK

Хочу поделиться своим опытом классификации пользователей социальной сети по их комментариям на два класса по складу ума: гуманитарный или технический. В данной статье не будут использоваться последние достижения глубокого обучения, но будет разобран завершенный проект по классификации текстов: от поиска подходящих данных до предсказаний. В конце будет представлено веб-приложение, в котором вы сможете проверить себя.

  Пишем x86-64 комплятор JIT с нуля в стоковом Python

В этой статье я покажу, как написать рудиментарный, нативный x86-64 just-in-time компилятор (JIT) на CPython, используя только встроенные модули.

Код предназначен для UNIX-систем, таких как macOS и Linux, но его должно быть легко транслировать на другие системы, типа Windows. Весь код опубликован на github.com/cslarsen/minijit.

Цель — сгенерировать в рантайме новые версии нижеприведённого ассемблерного кода и выполнить их.

  Механизм общения браузера и сервера на языке Python

Разбираемся как браузер общается с веб сервером с помощью языка Python.

  Устраняем зависимости между объектами в Python

Хорошо спроектированная программа состоит из объектов, отвечающих принципу единственной обязанности. Такие объекты постоянно “общаются” друг с другом, и поэтому зависимость между ними неизбежна. Но эту зависимость можно свести к минимуму с помощью: внедрения зависимости (dependency injection), использования именованных параметров и изоляции внешних сообщений. Об этих методах пойдет речь в статье.

  Синтаксический анализ в NLTK. Продолжение

Это небольшое продолжение предыдущей статьи, где рассматривались основы синтаксического анализа с помощью пакета Natural Language Toolkit (сокращенно, NLTK). Как и в прошлой статье, в этой я буду сопровождать примеры кодом на языке Python (версии 2.7).

Видео

  Сергей Архипов - Вероятностные структуры данных

Слайды: https://speakerdeck.com/9seconds/probablistic-data-structures

Почему порой следует знать о ваших данных несколько больше, чем-то, как их обрабатывать в лоб. Как можно, воспользовавшись пониманием их характера и природы, сделать обработку намного эффективнее, чем она могла бы быть в случае честных алгоритмах. Метаданные не просто как ярлычки для записи в таблице, но как неявное знание о том, что хранится в базе.

В докладе будут упомянуты такие слова, как Кафка, Майсиквел и ВКонтакте. Блумфильтры, гиперлоглог и тидайджест.
 

  Кирилл Кузьминых - zc.buildout

Слайды: https://speakerdeck.com/cykooz/zc-dot-buildout

Обзор инструмента для автоматизации сборки программ и подготовки окружения для их выполнения.

  Иван Цыганов - OWASP TOP X and one more thing…

Слайды: http://mi.0-0.im/rannts.pdf

В докладе я расскажу про наиболее опасные уязвимости в веб-приложениях по версии OWASP 2017 года. Объясню, на какие уязвимости стоит обратить внимание разработчикам, а за какие должны бы отвечать разработчики фреймворков и библиотек. Покажу, какие уязвимости были обнаружены в известных сервисах и попробую выснить причины их возникновения.

  Алексей Кутепов - Python + Minecraft

Слайды: https://1drv.ms/p/s!AubE8uMJoD1ygYEM_fNwAAi7pkg4rw

Новый уровень стоительства. Белая магия в ваших руках. Сopy-paste живописных гор к себе в деревню. Мгновенное строительство цитаделей вокруг персонажа. Захватывающие приключения продолжаются.

  Никита Варенцов - Kubernetes — вводная. Обзор архитектуры, деплой, печеньки

Обзор архитектуры, деплой, печеньки
Слайды: https://docs.google.com/presentation/d/1kOus5QRNZ-mm24U3RrOtNBSQjV2DqDLP2Kd3uhCkY0k/present#slide=id.p

В этом докладе мы разберемся с архитектурой Kubernetes, рассмотрим процесс деплоя, управление ресурсами, масштабирование и мониторинг сервисов. Поговорим о проблемах и достоинствах использования Kubernetes.

Релизы

  django-extensions - 1.9.8

Набор пользовательских расширений для Django-проектов. Изменения описаны по ссылке https://allmychanges.com/p/python/django-extensions/#1.9.8. Скачать можно по ссылке: https://pypi.python.org/pypi/django-extensions/

  Google выпустила Tangent, новую Python-библиотеку для машинного обучения

Tangent — новая открытая Python-библиотека для автоматического дифференцирования. Она принимает на вход Python-функцию f и создает новую Python-функцию, вычисляющую градиент f. Это упрощает и увеличивает наглядность градиентных вычислений.