Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Продолжение истории о том, как я пытался реализовать подпись файлов с помощью сертификата на USB-устройстве, но уже с использованием USB-токена Рутокен 3.0, а дополнительно сделал шифрование и расшифрование директории.
(20.11.2017 - 26.11.2017)
Приветствую коллеги! Пришло время продолжить наш спонтанный мини цикл статей, посвящённый основам машинного обучения и анализа данных.
В прошлый раз мы разбирали с Вами задачку применения линейной регрессии к открытым данным правительства Москвы, а в этот раз данные тоже открыты, но их уже пришлось собирать вручную.
Итак, сегодня мы с Вами поднимем животрепещущую тему – обращения граждан в органы исполнительной власти Москвы, нас с вами сегодня ждет: краткое описание набора данных, примитивный анализ данных, применение к ним модели линейной регрессии, а также краткая отсылка к учебным курсам для тех, кто совсем ничего не поймет из материала статьи. Ну и конечно же останется пространство для самостоятельного творчества.
Напомню, что наша статья рассчитана в первую очередь на начинающих любителей Python и его распространённых библиотек из области DataScience. Готовы? Тогда, милости прошу под кат.
Мне часто приходится делать небольшие сервера на tornado. В каких-то проектах нужна поддержка работы с redis, в каких-то нет. В других надо рендерить ReactJS. И во всех нужно логирование. Для начала я поднял локальный pypi репозитарий, собрал свои наработки в питоний пакет и радовался жизни. Достаточно было установить пакет, импортировать из него классы, отнаследоваться и радостно пилить код дальше.
Доброго всем! Мы тут потихоньку начали исследовать новое совсем для нас направление для обучения — блокчейны и нашли то, что оказалось интересным в рамках нашего курса по Python, в том числе. Чем, собственно, и хотим поделиться с вами.
Я использовал шум Перлина для создания эффекта тумана и главного экрана в Under Construction. Я твитнул о моих усилиях по оптимизации алгоритма, и несколько людей ответили, что они не понимают, как работает шум Перлина и что это на самом деле такое.
Признаюсь, что я (немного) понимаю шум Перлина прежде всего потому, что я реализовывал его ранее, и несколько дней ушло на погружение в неуклюжие объяснения полдюжины разработчиков, более заинтересованных в показе собственных демок, нежели в реальном объяснении. Несколько полезных ресурсов, которые я нашел, часто содержали ошибки и не давали мне интуитивного чувства понимания, как и почему оно все-таки работает.
В октябре команда облачного сервиса Okdesk приняла участие в пензенском хакатоне, в рамках которого мы разработали "коробочного" Telegram-бота для Okdesk. Бот позволит клиентам сервисных компаний отправлять заявки на обслуживание, переписываться по заявками и ставить оценки выполнению заявок не выходя из любимого мессенджера.
При изучении технологий Deep Learning я столкнулся с нехваткой относительно простых примеров, на которых можно относительно легко потренироваться и двигаться дальше.
В данном примере мы построим рекуррентную нейронную сеть, которая получив на вход текст романа Толстого «Анна Каренина», будет генерировать свой текст, чем-то напоминающий оригинал, предсказывая, какой должен быть следующий символ.
Структуру изложения я старался делать такой, чтобы можно было повторить все шаги новичку, даже не понимая в деталях, что именно происходит внутри этой сети. Профессионалы Deep Learning скорее всего не найдут тут ничего интересного, а тех, кто только изучает эти технологии, прошу под кат.
В предыдущей статье я описал несколько алгоритмов эволюционных стратегий (evolution strategies, ES), помогающих оптимизировать параметры функции без необходимости явно вычислять градиенты. При решении задач обучения с подкреплением (reinforcement learning, RL) эти алгоритмы можно применять для поиска подходящих наборов параметров модели для агента нейросети (neural network agent). В этой статье я расскажу об использовании ES в некоторых RL-задачах, а также опишу методы поиска более стабильных и устойчивых политик.
О том как настроить sentry + django
Python интерфейс для MongoDB. Изменения описаны по ссылке https://allmychanges.com/p/python/pymongo/#3.6.0. Скачать можно по ссылке: http://pypi.python.org/pypi/pymongo/
PYтокен: история о том, как питон съел ЭЦП. Часть 2
Ищем похожие иероглифы при помощи искусственного интеллекта
Writing your own CUPS printer driver in 100 lines of Python (2018)
Pyrefly vs. ty: Comparing Python’s Two New Rust-Based Type Checkers
LibrePythonista - Python in LibreOffice
Docker: disable “What’s next” adverts
mav - Visualize the internal workings of LLM
kubectl-mcp-server - Chat with your Kubernetes Cluster
The Real Python Podcast – Episode #251: Python Thread Safety & Managing Projects With uv
Анализ и прогнозирование погодных условий
flowshow: Wrapper for Python Tasks That Form a Flow