Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
(09.04.2018 - 15.04.2018)
Платформа Jupyter позволяет начинающим разработчикам, аналитикам данных и студентам быстрее начать программировать на Python. Предположим, ваша команда растёт — в ней теперь не только программисты, но и менеджеры, аналитики, исследователи. Рано или поздно отсутствие совместного рабочего окружения и сложность настройки начнут тормозить работу. Справиться с этой проблемой поможет JupyterHub — многопользовательский сервер c возможностью запускать Jupyter одной кнопкой. Он отлично подходит для тех, кто преподаёт Python, а также для аналитиков. Пользователю нужен только браузер: никаких проблем с установкой ПО на ноутбук, совместимостью, пакетами. Мейнтейнеры Jupyter активно развивают JupyterHub наряду с JupyterLab и nteract.
Попробуйте решить задачу из онлайн-хакатона Geohack.112. Дано: территория Москвы и Московской области была разделена на квадраты размеров от 500 на 500 метров. В качестве исходных данных представлено среднее количество вызовов экстренных служб в день (номера 112, 101, 102, 103, 104, 010, 020, 030, 040). Рассматриваемый регион был поделен на западную и восточную часть. Участникам предлагается, обучившись по западной части, предсказать количество вызовов экстренных служб для всех квадратов восточной.
Panta rhei и вот уже приближается запуск обновленного курса «Web-разработчик на Python» и у нас остался ещё материал, который мы нашли сильно небезынтересным и коим хотим поделиться с вами.
Чем опасны pickles?
Эти соленые огурчики крайне опасны. Я даже не знаю, как объяснить, насколько. Просто поверь мне. Это важно, понимаешь?
“Explosive Disorder” Pan TelareЭто девятнадцатая часть серии мега-учебника Flask, в которой я собираюсь развернуть Microblog на платформе Docker.
Когда мы слышим о сверточных нейронных сетях (CNN), мы обычно думаем о компьютерном зрении. CNN лежали в основе прорывов в классификации изображений — знаменитый AlexNet, победитель соревнования ImageNet в 2012 году, с которого начался бум интереса к этой теме. С тех пор сверточные сети достигли большого успеха в распознавании изображений, в силу того факта, что они устроены наподобие зрительной коры головного мозга — то есть умеют концентрироваться на небольшой области и выделять в ней важные особенности. Но, как оказалось, CNN хороши не только для этого, но и для задач обработки естественного языка (Natural Language Processing, NLP). Более того, в недавно вышедшей статье [1] от коллектива авторов из Intel и Carnegie-Mellon University, утверждается, что они подходят для этого даже лучше RNN, которые безраздельно властвовали областью на протяжении последних лет.
markitdown: Convert Files and Office Documents to Markdown
Best Shift-Left Testing Tools to Improve Your QA
htmy: Async, Pure-Python Rendering Engine
statsmodels: Statistical Modeling and Econometrics in Python
SVG-виджеты для tcl/tk. Финальный аккорд. Часть IV
Implementing Approximate Nearest Neighbor Search with KD-Trees
django-liveconfigs - управление настройками в django
Пишем свой PyTorch на NumPy. Часть 1
Царство грибов. Симуляция мицелия на p5py. Битвы гифов. Часть первая
Мэтчинг персонажей. Level Hard
Стратификация: как не облажаться с A/B тестами