Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
XML/HTML парсер. Скачать можно по ссылке: https://pypi.python.org/pypi/beautifulsoup4/
(08.10.2018 - 14.10.2018)
Когда-то давно, в студенческие годы, меня укусил питон, правда инкубационный период затянулся и получилось так, что я стал программистом на перле.
Однако в какой-то момент перл исчерпал себя и я решил заняться питоном, сначала просто делал что-то и разбирался с тем, что нужно для данной задачи, а потом понял, что нужны какие-то систематизированные знания и прочитал несколько книг
Реализация алгоритмов на языке Python с использованием символьных вычислений очень удобна при решении задач математического моделирования объектов, заданных дифференциальными уравнениями. Для решения таких уравнений широко используются преобразования Лапласа, которые, говоря упрощенно, позволяют свести задачу к решению простейших алгебраических уравнений.
В данной публикации предлагаю рассмотреть функции прямого и обратного преобразования Лапласа из библиотеки SymPy, которые позволяют использовать метод Лапласа для решения дифференциальных уравнений и систем средствами Python.
Популярные инструменты для анализа кода Python делают плоды вашего труда лучше и эффективнее. Как? Рассказываем в статье.
Хочу поделиться опытом написания миграций для postgres и django. Речь в основном пойдёт про postgres, django же здесь хорошо дополняет, так как из коробки имеет автоматическую миграцию схемы данных по изменениям модельки, то есть имеет довольно полный список рабочих операций по изменению схемы. Django можно заменить на любой любимый фрэймворк/библиотеку — подходы скорее всего будут похожи.
Многие считают, что метапрограммирование в Python излишне усложняет код, но если использовать его правильно, то можно быстро и элегантно реализовать сложные паттерны проектирования. Помимо этого, такие известные Python-фреймворки, как Django, DRF и SQLAlchemy, используют метаклассы, чтобы обеспечить легкую расширяемость и простое переиспользование кода.
У большинства наверняка возникнет резонный вопрос: зачем?
С прагматической точки зрения незачем) Всегда можно воспользоваться условным Вольфрамом, а если нужно это сделать в питоне, то использовать специальные модули, которыми не так уж и сложно овладеть.
Но если вдруг вам дали такое задание или вы просто очень любите программирование, как я, то вам предстоят увлекательные — а временами и не очень — часы написания программы и ее отладки)
Мы продолжаем говорить о метапрограммировании в Python. При правильном использовании оно позволяет быстро и элегантно реализовывать сложные паттерны проектирования. В прошлой части этой статьи мы показали, как можно использовать метаклассы, чтобы изменять атрибуты экземпляров и классов.
В преддверии нашей Moscow Python Conf++ мы кратко поговорили с Олегом Чуркиным, техлидом финтех-стартапа, о его обширном опыте работы с Celery: полмиллионе фоновых задачах, багах и тестировании.
В рамках нашего курса «Разработчик Python» мы провели ещё один открытый урок на тему «Как не нужно писать на Python». Занятие вёл преподаватель и создатель курса Станислав Ступников, имеющий большой опыт промышленной и научной разработки. Рассматривались антипаттерны программирования, bad practice и прочее зло, о котором нужно знать и которого следует избегать в процессе написания кода.
Изучаешь Python? Пройди профессиональный курс с поддержкой куратора и начни разрабатывать игры, создавать ботов, управлять умным домом!
[Реклама]
FastSIO: Как я попытался войти в open source, и надеюсь что у меня получится это сделать
Сводка от pythonz 17.08.2025 — 24.08.2025
Алгоритм как писатель: можно ли написать рассказ на чистом SQL?
Talk Python to Me: #517: Agentic Al Programming with Python
Невидимые чернила в цифровом мире: технология сокрытия данных в DOCX/XLSX
Best Code Rule: Always Separate Input, Output, and Processing
Как работает машина Enigma M3 (для флота)
Градиентный бустинг для новичков
djhtmx - Interactive UI components for Django using htmx
Python f-string cheat sheets (2022)
Как pytest работает под капотом