IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
читайте авторский блог


Новый материал в ленте
  aiohttp - 3.11.7

http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp


Python Дайджест. Выпуск 252

(15.10.2018 - 21.10.2018)

поделиться выпуском 
Дайджест python,

Статьи

  Облачные сервисы Amazon и анализ инвестиционного портфеля

В последнее время на фондовых рынках наблюдается высокая волатильность, когда, например, стабильная бумага известной компании может враз потерять сразу несколько процентов на новостях о санкциях против ее руководства или наоборот взлететь до небес на позитивном отчете и ожиданиях инвесторов о сверхприбыльных дивидендах.

Как же определить, принесло ли владение данной ценной бумагой доход или одни лишь убытки и разочарование?

  Введение в WSGI-серверы: Часть первая

WSGI-серверы появились потому, что веб-серверы в то время не умели взаимодействовать с приложениями, написанными на языке Python. WSGI (произносится как «whiz-gee» с твердым «g») был разработан Филиппом Дж. Эби (вместе с Ян Бикинг и др.) В начале 2000-х годов. Модуль Apache, известный как mod_python, разработанный Григорием Трубецким в конце 90-х годов, на тот момент обрабатывал большую часть Python-приложений. Однако mod_python не был официальной спецификацией. Он был просто создан, чтобы разработчики могли запускать код Python на сервере. К сожалению, такой подход был небезопасным и разработчики начали искать новое решение.

WSGI(Web-Server Gateway Interface) является потомком CGI(Common Gateway Interface). Когда веб начал развиваться, CGI разрастался из-за поддержки огромного количества языков и из-за отсутствия других решений. Однако, такое решение было медленным и ограниченным. WSGI был разработан как интерфейс для маршрутизации запросов от веб-серверов(Apache, Nginx и т.д.) на веб-приложения.

  Автоматизация импорта данных в Google BigQuery с помощью Google Cloud Functions

Мы постоянно работаем с Google BigQuery – импортируем данные о пользователях, их заказах и расходах на рекламу из разных источников, чтобы иметь возможность объединять их между собой. Что нам это дает? Например, если у вас интернет-магазин и клиент делает заказ по телефону, а потом авторизовывается на сайте, то с помощью Google BigQuery можно связать все его действия задним числом. Можно отслеживать весь путь клиента по маркетинговой воронке – от первого попадания на сайт до покупки в brick and mortar магазине, и оценивать рекламные кампании с учетом таких офлайн-продаж.

  Конференция про Python и про общение

Традиционно Python используют для создания сетевых сервисов, бэкенда в вебе и, конечно, для сбора и обработки данных, как правило Больших. Эти направления в равных долях с экосистемными докладами и постараемся обсудить на грядущей Moscow Python Conf++. Эта конференция для Python-разработчиков состоится в Москве 22 и 23 октября, и я возглавляю её Программный комитет. Программа, можно сказать, выстрадана, нам удалось сделать её именно такой, как мы и планировали, — разнообразной. Бэкенд, Big Data и особенности языка, у нас гармонично сочетаются с докладами по тестированию, искусственному интеллекту, безопасности и DevOps. Хочется заранее поделиться с вами результатом, поэтому предлагаю обзор докладов по секциям — то, что к вам никак не относится, можно проматывать.

  Игра в Тьюринга

Все мы знаем "Тест Тьюринга". В классическом его варианте человек и машина отвечают на вопросы судьи, причем судья не видит отвечающих и должен только по ответам догадаться, кто из них кто.

Про этот тест даже снят короткометражный игровой фильм «Кто за стеной». Можно сказать, фантастический, потому что действие по сюжету происходит в конце 2000 года, а снят он, на минуточку, в 1977 году. Если не видели — посмотрите обязательно, и обязательно до конца — как и положено в короткометражном фильме, развязка будет неожиданна.

  Метаморфозы атрибутов класса

Переход с классических языков программирования на Питон доставляет немало сюрпризов.
Читаем документацию:

 

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and methods shared by all instances of the class

  [Перевод] Как сделать функции на Python еще лучше

Собственно, заголовок этой замечательной статьи от Джеффа Кнаппа (Jeff Knupp), автора книги "Writing Idiomatic Python" полностью отражает ее суть. Читайте внимательно и не стесняйтесь комментировать.

Поскольку очень не хотелось оставлять в тексте важный термин латиницей, мы позволили себе перевести слово «docstring» как «докстрока», обнаружив этот термин в нескольких русскоязычных источниках.

  Python-установщик Android-сборок из TeamCity своими руками

Во время тестирования приложений под Android (не только, но далее речь пойдет только про данную платформу), приходится устанавливать множество сборок тестируемого продукта / продуктов. Этот процесс отнимает время и силы, которые эффективнее потратить на поиск багов.

 

В настоящей статье мы рассмотрим существующее решение, напишем свое на Python и сравним их.

  Как подружить питон с Невидимым Интернетом? Основы разработки I2P приложений на Python и asyncio

Проект Невидимый Интернет (далее просто I2P) представляет разработчикам платформу для разработки приложений с усиленными требованиями по приватности пользователей. Это виртуальная сеть поверх обычного Интернета, в которой узлы могут обмениваться данными и при этом не раскрывать свой настоящий IP адрес. Вместо IP адресов внутри Невидимого Интернета соединения происходят между виртуальными адресами, которые называются I2P Destination. Можно иметь сколько угодно таких адресов и менять их хоть для каждого соединения, они не предоставляют другой стороне никакой информации о настоящем IP адресе клиента.

 

В этой статье описаны базовые вещи, которые нужно знать для написания I2P приложений. Примеры кода приведены на Python с использованием встроенного асинхронного фреймворка asyncio.

  Работа с изображениями на Python в 2017 году

Тема сегодняшнего разговора — чему же научился Python за все годы своего существования в работе с изображениями. И действительно, кроме старичков родом из 1990 года ImageMagick и GraphicsMagick, есть современные эффективные библиотеки. Например, Pillow и более производительная Pillow-SIMD. Их активный разработчик Александр Карпинский (homm) на MoscowPython сравнил разные библиотеки для работы с изображениями на Python, представил бенчмарки и рассказал о неочевидных особенностях, которых всегда хватает. В этой статье расшифровка доклада, который поможет вам выбрать библиотеку под свое приложение, и сделать так, чтобы она работало максимально эффективно.

  Интеграция с SAP ERP, на примере с Django-python, по протоколу oData(rest)

Всегда была интересна тема интеграции больших систем вроде SAP с небольшими, но более гибкими, так-сказать взять лучшее из того и другого.

В частности, в моем примере будет описана интеграция SAP ERP с Django.

  Построение функций в консоли. Часть 2 (График)

В прошлый раз я остановился на построении таблицы значения функций. Пришла пора перейти к построению самого графика, ради чего все это, собственно, и начиналось.

Итак, основная идея состоит в следующем. Повернем координатную ось на 90 градусов по часовой стрелке. Это нужно для того, чтобы упростить построения, не храня данные о каждой точке в каком-нибудь листе.

  Как правильно «фармить» Kaggle

Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме — ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.

  Анализ производительности WSGI-серверов: Часть вторая

Данная статья является переводом статьи Кевина Голдберга «A Performance Analysis of Python WSGI Servers: Part 2» dzone.com/articles/a-performance-analysis-of-python-wsgi-servers-part с небольшими дополнениями от переводчика.

Видео

  RabbitMQ: плагины и расширения

Расширения и плагины RabbitMQ избавляют программистов от написания дополнительной логики работы с очередями, повышают отказоустойчивость сервисов и позволяют масштабироваться не только между дата-центрами, но и между континентами. В докладе я расскажу, какие именно расширения и для каких целей мы используем в компании, с какими трудностями столкнулись и как их преодолели

  Изменение схемы таблиц без долгих блокировок в PostgreSQL

Во время многих операций по изменению схемы базы данных сервис не может корректно работать на запись. В докладе я расскажу о том, какие операции в PostgreSql требуют длительных блокировок и как мы в Формах Яндекс.Коннекта обеспечиваем почти стопроцентную доступность сервиса на запись во время выполнения таких операций. Также мы поговорим о Django-библиотеке, призванной автоматизировать некоторые из описанных процессов

  Что внутри у Питона: как работает интерпретатор

Это первая из трёх лекций в цикле «Внутренности Питона». Мы разберёмся, как устроен Питон, посмотрим на этапы работы интерпретатора, построение деревьев разбора и генерацию байткода, а также выясним, какое пространство для оптимизаций нам это дает. Если хотите больше знать про язык, на котором пишете, то приходите. Если уже все знаете, всё равно приходите