Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Масштабируемый, не блокирующий web-сервер. Скачать можно по ссылке: https://pypi.python.org/pypi/tornado/
(26.11.2018 - 02.12.2018)
Привет! На хабре было довольно много статей про пасхалки питона, но вроде нигде не упоминалось про то, как все это устроено изнутри. Думаю, что будет интересно прежде всего начинающим питонистам. Об этом и пойдет речь под катом!
Полгода назад я начал изучать машинное обучение, прошел пару курсов и получил некоторый опыт в этом. Затем, видя самые разные новости о том, какие нейронные сети крутые и много могут делать, я решил попробовать изучить их. Начал читать книгу Николенко про глубокое обучение и в ходе чтения у меня появилось несколько идей (которые не новы для мира, но для меня представляли огромный интерес), одна из которых — создать нейросеть, которая генерировала бы для меня арт, который казался бы классным не только мне, "отцу рисующего ребёнка", но и другим людям. В этой статье я постараюсь описать путь, который я прошел для того, чтобы получить первые удовлетворяющие меня результаты.
Представьте: телефонный звонок в три часа ночи, вы берете трубку и слышите крик о том, что больше никто не пользуется вашим продуктом. Страшно? В жизни, конечно, все не так, но если не уделять должное внимание проблеме оттока пользователей, можно оказаться в похожей ситуации.
Мы уже подробно рассказали, что такое отток: углубились в теорию и показали, как превратить нейросеть в цифрового оракула. Специалисты студии Plarium Krasnodar знают еще один способ предсказания. О нем мы и поговорим.
Сегодня предлагаю погрузиться в один из удобнейших веб-фреймворков в связке c Python под названием Dash. Появился он не так давно, пару лет назад благодаря разработчикам фреймворка plotly. Сам Dash является связкой Flask, React.Js, HTML и CSS.
Перси Дьяконис, вдоль и поперёк изучивший пасьянсную сортировку, считает, что она является быстрейшим способом ручного упорядочивания колоды карт.
Так что, если уважаемый математик (и бывалый карточный фокусник) не врёт, то с практической ценностью алгоритма всё в порядке.
А теперь следите за руками.
В данной статье рассматриваются наиболее интересные преобразования, которые выполняет цепочка из двух транспайлеров (первый переводит код на языке Python в код на новом языке программирования 11l, а второй — код на 11l в C++), а также производится сравнение производительности с другими средствами ускорения/исполнения кода на Python (PyPy, Cython, Nuitka).
Разбираемся с Serverless JSON API и разворачиваем в Zeit Now
Для тех, кому понравилась моя предыдущая статья, продолжаю делится впечатлениями об инструменте для нагрузочного тестирования Locust.
Постараюсь наглядно показать преимущества написания нагрузочного теста python кодом, в котором можно удобно как подготавливать любые данные для теста, так и обрабатывать результаты.
В один прекрасный день разные каналы в телеграмме начали кидать ссылку на крэкмишку от ЛК, Успешно выполнившие задание будут приглашены на собеседование!. После такого громкого заявления мне стало интересно, насколько сложным будет реверс. О том, как я решал этот таск можно почитать под катом (много картинок).
Капчей нужно защищать не только веб формы но и публичный REST API. django-rest-captcha реализация капчи для DRF
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
chonkie: no-nonsense RAG chunking library
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch