Собрали в одном месте самые важные ссылки
читайте авторский блог
Масштабируемый, не блокирующий web-сервер. Скачать можно по ссылке: https://pypi.python.org/pypi/tornado/
(23.09.2019 - 29.09.2019)
Продолжаем тему как вызывать C/C++ из Python3. Теперь используем C API для создания модуля, на этом примере мы сможем разобраться как работает cffi и прочие библиотеки упрощающие нам жизнь. Потому что на мой взгляд это самый трудный способ.
Сегодня мы предлагаем вашему вниманию первую часть перевода материала о том, как в Dropbox занимаются контролем типов Python-кода.
В Dropbox много пишут на Python. Это — язык, который мы используем чрезвычайно широко — как для бэкенд-сервисов, так и для настольных клиентских приложений. Ещё мы в больших объёмах применяем Go, TypeScript и Rust, но Python — это наш главный язык. Если учитывать наши масштабы, а речь идёт о миллионах строк Python-кода, оказалось, что динамическая типизация такого кода неоправданно усложнила его понимание и начала серьёзно влиять на продуктивность труда. Для смягчения этой проблемы мы приступили к постепенному переводу нашего кода на статическую проверку типов с использованием mypy. Это, вероятно, самая популярная самостоятельная система проверки типов для Python. Mypy — это опенсорсный проект, его основные разработчики трудятся в Dropbox.
В связи с повсеместным хайпом по поводу Чернобыля в начале лета (по крайней мере в среде ядерной энергетики), а также гремящих словах цифровизация и геймификация, мы в ИБРАЭ РАН решили создать некоторое подобие квеста-приложения в котором концептуально моделируется эксплуатация энергоблока атомной станции и провести его тестирование в Битцевском парке.
Сегодня публикуем вторую часть перевода материала о том, как в Dropbox организовывали контроль типов нескольких миллионов строк Python-кода.
Вот и наступил новый этап в развии Raspberry-танка.
В предыдущей серии оказалось, что семантическая сегментация из коробки не по зубам Raspberry.
В этой «статье», а вернее сказать очерке, покажу очень простой способ развлечься зная самые основы latex и python.
Про изменение климата сейчас не говорит только ленивый. И случайно найдя неплохой сайт с историческими данными, стало интересно проверить — как же реально менялась температура с годами. Для теста мы возьмем данные с нескольких городов и проанализируем их с помощью Pandas и Matplotlib. Заодно выясним, где теплее, в Москве или Петербурге.
Продолжение цикла статей.
В экосистеме Python существует множество пакетов для CLI-приложений, как популярных, вроде Click, так и не очень. Наиболее распространённые были рассмотрены в предыдущей статье, здесь же будут показаны малоизвестные, но не менее интересные.
Если вы совершено не знакомы с асинхронным программированием и хотите разобраться с этим максимально простым способом, это статья для вас. В статье рассказывается то такое синхронные и асинхронные программы, и их отличия.
Оригинальная статья: Doug Farrell – Getting Started With Async Features in Python
Скачать ее можно перейдя по ссылке, данная база является открытой и содержит все адреса объектов по России (адресный реестр). Интерес к этой базе вызван тем, что файлы, которые в ней содержатся достаточно объемны. Так, например, самый маленький составляет 2,9 Гб. Предлагается остановиться на нем и посмотреть, справится ли с ним pandas, если работать на машине, располагая только 8 Гб оперативной памяти. А если не справится, какие есть опции, для того, чтобы скормить pandas данный файл.
Применяется для официальных Python конференций
Очередной очерк. На этот раз поиграемся с комплексными числами, с формулами и их визуализацией.
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
chonkie: no-nonsense RAG chunking library
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch