Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Масштабируемый, не блокирующий web-сервер. Скачать можно по ссылке: https://pypi.python.org/pypi/tornado/
(04.11.2019 - 10.11.2019)
В России одна известная организация под названием ВЦИОМ проводила социологическое исследование, на котором гражданам предлагали ответить на вопрос: «Согласны ли вы со следующим утверждением: Солнце вращается вокруг Земли?» Данные этого опроса многократно перепечатываются в СМИ, и на различных сетевых ресурсах в комментариях часто ссылаются на него при обсуждении различных общественно-политических проблем.
Сегодня мы публикуем второй материал из цикла, посвящённого использованию Python в Instagram. В прошлый раз речь шла проверке типов серверного кода Instagram. Сервер представляет собой монолит, написанный на Python. Он состоит из нескольких миллионов строк кода и имеет несколько тысяч конечных точек Django.
Это первая часть из серии обучающих статей о создании смарт-контрактов на Python в блокчейн сети Ontology при помощи инструмента разработки смарт-контрактов SmartX.
В этой статье мы начнём знакомство с API смарт-контракта Ontology. API смарт-контракта Ontology разделен на 7 модулей
Мы уже рассказывали о платформе LEGO MINDSTORMS Education EV3. Основные задачи этой платформы — обучение на практических примерах, развитие навыков STEAM и формирование инженерного мышления. В ней можно проводить лабораторные работы по изучению механики и динамики. Лабораторные стенды из кубиков LEGO и утилиты по регистрации и обработке данных делают опыты еще интереснее и нагляднее и помогают детям лучше понять физику. Например, школьники могут собрать данные о температуре плавления и с помощью приложения систематизировать их и представить в виде графика. Но это только начало: сегодня мы расскажем, как дополнить этот набор средой программирования MicroPython и использовать его для обучения робототехнике.
Я начинаю серию статей, посвященных разработке сайтов на Django. Информация для этих статей получена из собственного опыта (полтора года коммерческой разработки на Django, несколько мелких фриланс-проектов, часть проекта pythonworld.ru написана на Django).
Перевод оригинальной статьи: James TimminsWhen to Use a List Comprehension in Python
Каждый экземпляр класса в CPython, созданный при помощи синтаксической конструкции class, участвует в механизме циклической сборки мусора. Это увеличивает след в памяти каждого экземпляра и может создавать проблемы с памятью в высоконагруженных системах.
Нельзя ли обойтись в случае необходимости одним базовым механизмом подсчета ссылок?
В этой статье я не буду рассказывать о новых фичах генератора парсера — я достаточно описал его в предыдущих частях. Вместо этого хочу рассказать что я делал на Core Developer Sprint на прошлой неделе, прежде чем всё сотрётся из моей памяти. Хотя большая часть материала так или иначе всё равно касается PEG. Так что мне придётся показать некоторый код, который задаёт направление в реализации PEG-парсера для Python 3.9.
Серверный код в Instagram пишут исключительно на Python. Ну, в основном это именно так. Мы используем немного Cython, а в состав зависимостей входит немало C++-кода, с которым можно работать из Python как с C-расширениями.
Мы просмотрели и сравнили 10 000 open source библиотек для Python и выбрали 34 самые полезные. Мы сгруппировали эти библиотеки в 8 категорий.
В предыдущей статье я рассказал про нашу систему поиска похожих заявок. После ее запуска мы стали получать первые отзывы. Какие-то рекомендации аналитикам нравились и были полезны, какие-то — нет.
Для того, чтобы двигаться дальше и находить более качественные модели, необходимо было сначала оценить работу текущей модели. Также необходимо было выбрать критерии, по которым две модели можно было бы сравнить между собой.
Сегодня публикуем вторую часть перевода материала, посвящённого статическому анализу больших объёмов серверного Python-кода в Instagram.
Command-line interface and makes possible automatic spec-based tests for Open API / Swagger based apps
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
chonkie: no-nonsense RAG chunking library
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch