Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Масштабируемый, не блокирующий web-сервер. Скачать можно по ссылке: https://pypi.python.org/pypi/tornado/
(20.01.2020 - 26.01.2020)
Мы всегда хотим писать код быстро, но за это приходится платить. На обычных высокоуровневых гибких языках можно быстро разрабатывать программы, но после запуска они работают медленно. Например, чудовищно медленно cчитать что-то тяжелое на чистом Python. Си-подобные языки работают гораздо быстрее, но в них легче наделать ошибок, поиск которых сведет весь выигрыш в скорости на нет.
Обычно эта дилемма решается так: сначала пишут прототип на чем-то гибком, например, на Python или R, а потом переписывают на C/C++ или Fortran. Но этот цикл слишком длинный, можно ли обойтись без этого?
В этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Конфиги. Все хранят их по разному. Кто-то в .yaml, кто-то в .ini, а кто-то вообще в исходном коде, подумав, что "Путь Django" с его settings.py действительно хорош.
В этой статье, я хочу попробовать найти идеальный (вероятнее всего) способ хранения и использования конфигурационных файлов в Python. Ну, а также поделиться своей библиотекой для них :)
Представляю вашему вниманию перевод статьи «NodeJS vs Python: How to Choose the Best Technology to Develop Your Web App's Back End» автора Oleg Romanyuk.
Многие используют в своей работе Jupyter Notebooks. Но с ростом сложности проекта появляются проблемы. В блокноте появляются ячейки с красными пометками для самого себя «перед запуском укажи число...» или «задай количество итераций исходя из...». Какой-то откат к командной строке получается.
Да и вывод данных на экран не всегда воспринимается без пояснений сторонним человеком, который привык к красивым таблицам, картинкам и прочим современным элементам интерфейса.
Эта статья является продолжением цикла про Велоинфраструктуру в Голландии. В этот раз речь пойдет про автомобили.
В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.
Многим не хватает графиков в Notion'e. Поэтому я решил напилить автоматическую штуку для их генерации.
Георадар (радиотехнический прибор подповерхностного зондирования, GPR, Ground Penetrating Radar), применяющийся в настоящее время весьма широко — от картирования нор кроликов и изучения ящериц до поиска мин, остается достаточно дорогим удовольствием.
Кратко о новом инструменте, позволяющем в Git разделить один файл на несколько, сохранив при этом историю.
Изученая возможности MicroPython для своих целей натолкнулся на одну из реализаций библиотеки asyncio и, после недолгой переписки с Piter Hinch — автором библиотеки, понял, что мне необходимо глубже разобраться с принципами, базовыми понятиями и типичными ошибками использования методов асинхронного программирования. Тем более, что раздел для начинающих — как раз для меня.
Это руководство предназначено для пользователей, имеющих разный уровень опыта работы с asyncio, в том числе содержит специальный раздел для начинающих.
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
chonkie: no-nonsense RAG chunking library
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch