Собрали в одном месте самые важные ссылки
читайте авторский блог
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
(03.02.2020 - 09.02.2020)
Я работаю тестировщиком на проекте, суть которого состоит в сборе и хранении различных данных и формировании на их основе разных отчетов и файлов-выгрузок. При формировании таких отчетов учитывается большое количество условий для отбора данных и поэтому при тестировании приходится много работать с SQL-запросами в БД. Но для проверки правильности отбора данных и поиска лишних/пропавших данных этого зачастую не хваетает, поэтому пришлось искать дополнительные инструменты для этого.
Поскольку у меня были уже какие-то базовые знания python, я решила попробовать написать небольшие скрипты, которые позволяли бы что-то делать с имеющимися данными и тем самым облегчать и ускорять процесс тестирования. В этой статье я расскажу, что из этого вышло.
Теория игр — это метод изучения стратегических ситуаций, когда результаты зависят не только от ваших действий, но и от того, что предпримут другие.
Что такое стратегическая ситуация? Вспомним типы рыночных структур: есть совершенная конкуренция, когда все компании являются ценообразующими, то есть им не нужно беспокоиться о стратегии формирования цены, и есть монополия, когда на рынке только одна компания, которая устанавливает свои цены. Так вот: все, что между совершенной конкуренцией и монополией, является стратегической ситуацией.
Алгоритмическая теория игр находится на стыке теории игр и компьютерной науки и направлена на изучение и создание алгоритмов для стратегий.
Под катом короткий рассказ про то, как можно задействовать теорию игр на Python при помощи библиотеки Nashpy.
Темные силы не дремлют. Они пробираются в дивное королевство Python и используют черную магию, чтобы осквернить главную реликвию — чистый код. Однако опасны не только злые чары.
Сегодня я расскажу о страшных чудовищах, которые, возможно, уже обжились в вашем коде и готовы устанавливать свои правила. Здесь нужен герой, который защитит безмятежный мир от злобных тварей. И именно вы станете тем, кто сразится с ними!
Недавно столкнулся с проблемой выбора квартиры и конечно первым делом решил узнать, что происходит на рынке недвижимости и, как это обычно бывает, половина экспертов с youtube.com говорят, что недвижимость будет расти, другая утверждает, что наоборот цена будет падать. В итоге решил разобраться сам, и вот, что из этого вышло.
На Real World отсутствует пример для aiohttp, и я решил его сделать. Опытным разработчикам, похоже, некогда этим заниматься, а начинающим в aiohttp непонятно как делать правильно. Я начал его делать с помощью Tortoise ORM. Пока начал делать аутентификацию.
Хочется сделать этот проект правильно, поэтому под катом очень много вопросов опытным aiohttp разработчкам.
Вновь я с уже второй статьей, затрагивающей API Яндекс.Музыки. Дело запланированное и упоминалось в первой статье.
Руки дошли, дело сделано. Сегодня я расскажу об интересных, на мой взгляд, моментах, которые присутствуют в кодовой базе моего Telegram бота, позиционирующего себя как полноценный клиент я.музыки. Ещё мы затронем API для распознавания музыки от Яндекс.
Перед тем, как приступить к попунктному рассказу реализации той или иной вещи, стоило бы иметь представление о самом боте и его функциональных возможностях.
Можно считать эту статью ответом на вот эту, где речь идет о написании подобной вещи на C++, с прицелом на новичков, то есть с упором на простой читаемый код вместо высокой производительности.
После прочтения статьи у меня возникла идея повторить написанную автором программу. Я знаком с C++, но никогда не писал на нем сколь-нибудь сложных программ, предпочитая python. Вот тут и родилась идея писать на нем. Особенно интересовала производительность — я был почти уверен, что пара-тройка кадров в секунду это предел для python. Я ошибался.
Сегодня я хочу вам предложить наглядное пособие по моделированию некоторых физических процессов и показать как получить красивые изображения и анимации. Осторожно много картинок.
Статья о том, как получить ежедневные исторические данные по акциям, используя yfinance, и минутные данные, используя alpha vantage.
Задача обнаружения объектов на изображении сегодня является одной из ведущих в области машинного зрения. Ее суть заключается в том, чтобы не только классифицировать объект на снимке, но и указать его точное местоположение.
Результаты обнаружения объекта могут быть дополнены информацией о том, насколько далеко расположен данный объект. Задачу измерения расстояния можно решить с помощью камеры глубины Intel RealSense D435, измеряющей глубину в каждой точке.
В данной статье мы решим задачу измерения расстояния до объекта в режиме реального времени с помощью библиотеки OpenCV и технологии RealSense.
Простой генератор qr кодов на python. В статье будет предложена версия консольная и с графическим интерфейсом
Эта статья посвящена Python Gateway — комьюнити-проекту с открытым исходным кодом для платформы данных InterSystems IRIS. Этот проект позволяет оркестрировать любые алгоритмы машинного обучения, созданные на языке Python (основная среда для многих Data Scientists), использовать многочисленные готовые библиотеки для быстрого создания адаптивных, роботизированных аналитических AI/ML-решений на платформе InterSystems IRIS. В этой статье я покажу как InterSystems IRIS может оркестровать процессы на языке Python, эффективно осуществлять двустороннюю передачу данных и создавать интеллектуальные бизнес-процессы.
Make dashboard UIs easier to use with widget search & text prediction
Недавно передо мной встала задача написать на Python web-приложение для разделения счёта в ресторане между участниками трапезы. Так как нужна DB для хранения данных о заказах и пользователях, встал вопрос выбора ORM для работы с базой. Разработка велась на Flask, так что сразу отметается Django ORM и выбор изначально пал в сторону SQLAlchemy. С одной стороны эта ORM почти всемогущая, но за счет этого она довольно тяжела в освоении. Помучившись с алхимией какое-то время, я решил найти более простой вариант, чтоб разработка пошла быстрее. В итоге для проекта была выбрана Pony ORM.
30 ноября — 1 декабря в Нижнем Новгороде прошелOpenVINO хакатон. Участникам предлагалось создать прототип продуктового решения с использованием Intel OpenVINO toolkit. Организаторами был предложен список примерных тем, на которые можно было ориентироваться при выборе задачи, но финальное решение оставалось за командами. Кроме этого, поощрялось использование моделей, которые не входят в продукт.
Данная статья является первой частью моего туториала по разработке достаточно необычного WSGI сервера. В данной статье я поясню теоретическую часть своей задумки.
Основная аудитория — начинающие разработчики, знакомые с Python но желающие познать дзен работы http протокола.
Это руководство охватывает обучение, оценку и прогнозирование (выводы) моделей в TensorFlow 2.0 в двух общих ситуациях:
Сейчас мало кто пишет большие проекты на Python без аннотации типов. Это и просто, и позволяет отловить кучу ошибок еще на этапе написания кода, да и работает очень шустро. Но стоит добавить в зависимости boto3, и mypy начинает пестрить сообщениями о том, что аннотаций типов для boto3 не существует в природе.
Не страшно, существует же официальный генератор аннотаций для boto3 botostubs. Только он официально не выпускался, не обновляется и с mypy не работает.
Есть и замечательный boto3-type-annotations, но тоже немного заброшен, и поддержки mypy всё еще нет.
Как же проверять типы для boto3, а бонусом получить автодополнение кода?
На данный момент бум на создание телеграмм-ботов начал сходить, но тема их создания не теряет актуальности. Написано множество библиотек для облегчение взаимодействия с Telegram Bot API, но после создания бота я так и не нашёл скрипта(библиотеки) для получения статистики бота. Поэтому решил написать скрипт для всех ботов на Python. Статистику будем получать, логируя действия пользователей и обрабатывая логи в удобный вид.
12 лет назад начался эксперимент по использованию Python в серьезных продуктах компании. Эксперимент получился удачным (кто бы сомневался!) и Python начал свое победное поползновение по сервисам компании. Яндекс.Афиша, Яндекс.Погода - через некоторое время сервисов стало очень много, и вместе с ними начали появляться "лучшие практики" и "устоявшиеся подходы" к решению разных задач.
Питон длительное время существует в контексте других языков программирования и впитывает концепции из соседних окружений. Tornado был скопирован с libevent. Asyncio тоже был позаимствован.
Go — волшебное слово, решение всех проблем продакшна разом и одновременно негодная технология без эксепшнов. Истина посередине, поэтому поговорим о конкретных примерах
Доклад будет состоять из 6-ти частей. Историческая справка: что это за проект, когда был основан проект и зачем, кем разрабатывалась первая версия, кто занимается им сейчас.
Красивые картинки на скатерти Улама
The Practical Guide to Scaling Django
Функция property() в Python: добавляем управляемые атрибуты в классы
ИИ в Крипто-Торговле: Возможен ли Успех? (Часть 1)
How to migrate your Poetry project to uv
Python Bytes: #410 Entering the Django core
Python REST API: Flask, Connexion и SQLAlchemy (часть 2)
Chronos от Amazon: революция в обработке временных рядов
Двусвязный список в Python: простой инструмент для сложных задач
Дообучаем языковую модель GPT2 с помощью Torch
Мой первый и неудачный опыт поиска торговой стратегии для Московской биржи