Собрали в одном месте самые важные ссылки
читайте авторский блог
А теперь о том, что происходило в последнее время на других ресурсах.
(10.02.2020 - 16.02.2020)
Отправка первого сообщения пользователю — приветствуем и подписываем
В первой части мы научились устанавливать webhook для нашего проекта botviber.
В этой 2-й мы научимся отправлять первое сообщение показываемое для наших пользователей, создавать ссылки для поиска и запуска нашего бота как внутри ViberURL так и NoViberURL
По сети сейчас гуляет видео — как автопилот Теслы видит дорогу.
У меня давно чесались руки транслировать видео, обогащенное детектором, да и в реальном времени.
Python существует уже много лет и за всё это время Гвидо ван Россум и другие разработчики этого языка стремились к созданию чистого дизайна языка. Для этого нужно было описать язык его же терминами. И по понятным причинам интерпретаторы на C(Cpython - самая популярная и на данный момент эталонная реализация) , Java(Jython) , на стеке .NET(IronPython)не подходят. Собственно нужна была реализация на самом питоне. И тут миру явился PyPy.
Новая подборка советов про Python и программирование из авторского канала @pythonetc
Перевод руководства по рекуррентным нейросетям с сайта Tensorflow.org. В материале рассматриваются как встроенные возможности Keras/Tensorflow 2.0 по быстрому построению сеток, так и возможности кастомизации слоев и ячеек. Также рассматриваются случаи и ограничения использования ядра CuDNN позволяющего ускорить процесс обучения нейросети.
Уже не помню, как я наткнулся на статью habr.com/ru/post/464337, но она запала мне в мозг и не давала покоя вплоть до минувшего дня. Несколько раз я пытался понять происходящее, пару раз пытался заставить это работать, но безрезультатно: я совершенно ничего не понимаю в нейронных сетях и даже программирую не как настоящий программист.
Шаблон проекта на Django – это естественный способ решения проблем, которые возникают, когда формат Django-проекта по умолчанию уже не отвечает требованиям. Сегодня в этом руководстве вы узнаете, как создать свой собственный проект из шаблона.
Python — особенный язык в плане итераций и их реализации, в этой статье мы подробно разберём устройство итерируемых объектов и пресловутого цикла for.
Apache Airflow — это продвинутый workflow менеджер и незаменимый инструмент в арсенале современного дата инженера. Если смотреть открытые вакансии на позицию data engineer, то нередко встретишь опыт работы с Airflow как одно из требований к позиции.
Исследовательская работа в области машинного обучения постепенно покидает пределы университетских лабораторий и из научной дисциплины становится прикладной. Тем не менее, все еще сложно находить актуальные статьи, которые написаны на понятном языке и без миллиарда сносок.
Этот пост содержит список англоязычных материалов за январь, которые написаны без лишнего академизма. В них вы найдете примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и не требуют сверхмощного железа для тестирования.
FastAPI — это фреймворк для создания лаконичных и довольно быстрых HTTP API-серверов со встроенными валидацией, сериализацией и асинхронностью,
что называется, из коробки. Стоит он на плечах двух других фреймворков: работой с web в FastAPI занимается Starlette, а за валидацию отвечает Pydantic.
Комбайн получился легким, неперегруженным и более, чем достаточным по функционалу.
Сегодня мы будем говорить о важных теоретических основах, которые необходимо понимать и помнить, чтобы писать грамотный, читаемый и красивый код. Мы будем вести речь об областях видимости переменных. Эта статья будет полезна не только новичкам, но и опытным программистам, которые пришли в Python из другого языка и хотят разобраться с его механиками работы.
Области видимости определяют, в какой части программы мы можем работать с той или иной переменной, а от каких переменная «скрыта». Крайне важно понимать, как использовать только те значения и переменные, которые нам нужны, и как интерпретатор языка себя при этом ведет. А еще мы посмотрим, как обходить ограничения, накладываемые областями видимости на действия с переменными.
Наверняка, каждый, кто хоть раз писал что-то на Python, задумывался о том, как распространять свою программу (или, пусть даже, простой скрипт) без лишней головной боли: без необходимости устанавливать сам интерпретатор, различные зависимости, кроссплатформенно, чтобы одним файлом-exe'шником (на крайний случай, архивом) и минимально возможного размера.
Для этой цели существует немало инструментов: PyInstaller, cx_Freeze, py2exe, py2app, Nuitka и многие другие… Но что, если вы используете в своей программе PyQt?
Многие разработчики согласны с тем, что при рефакторинге старого кода тесты необходимы как воздух. Многие разработчики также согласны с тем, что тестирование такого кода равно страданиям, или же даже не знают, с чего начать.
Сложность бывает неотъемлемой и привнесённой. Из доклада вы узнаете, как организовывать первую и минимизировать вторую. Поговорим о том, как построить свой продукт вокруг решаемой проблемы, а не используемого фреймворка. Узнаем, в каком месте лучше вводить typing и dataclasses.
Все цены на Avito выбираются программно: у нас есть команда аналитиков с Machine Learning, множество одновременных экспериментов и миллиард цен на разные услуги в разных городах. В докладе я расскажу про нашу инфраструктуру на Python, как мы работаем с данными, общаемся с аналитиками, отдаем цены для Frontend и быстро ищем нужные значения.
У вас настроен супер-стрикт-набор валидаторов кода, обязательная аннотация типов без Any и требования стопроцентного покрытия кода тестами? Вот и у нас тоже да. Но тогда для вас не секрет, что ошибки все равно будут. И никакие тесты вас не спасут. Потому что они плохие.
Почему появилась библиотека aiopg, какие были совершены ошибки (только мое мнение)? Разберемся, что это. ORM? Драйвер? Может быть, все вместе? Может, это что-то другое? Попробуем сравнить aiopg vs asyncpg
Сводка от pythonz 17.11.2024 — 24.11.2024
Предсказываем стоимость логистики грузоперевозок по городам на данных маркетплейсов логистики
Huey Background Worker - Building SaaS #207
Talk Python to Me: #486: CSnakes: Embed Python code in .NET
Security means securing people where they are
Is async django ready for prime time?
Как из Python, Open source и такой-то матери построить бизнес
FireDucks : Pandas but 100x faster
Diagram-as-Code: Creating Dynamic and Interactive Documentation for Visual Content
Пишем свою Diffusion модель с нуля
Сборщик мусора CPython и его влияние на производительность приложения
Django: find ghost tables without associated models