Выпуск 323

(24.02.2020 - 01.03.2020)

pythondigest.ru: Выпуск 323

Статьи

      Анализируем резюме юристов на hh.ru без api

Hh.ru — неплохой сайт, не нуждающийся в дополнительном представлении. Поиск вакансий на нем удобен и прозаичен. Однако, порой интереснее посмотреть со стороны работодателя:

 

  • как выглядит выдача резюме по целевому запросу,
  • как видно собственное резюме в выдаче,
  • как «проседает» резюме со временем, заодно собрать резюме коллег-юристов для построения мини-статистики.
Несмотря на то, что у hh есть собственное api и оно добротно задокументировано, доступ к нему тщательно оберегается.

      Советы по настройке uWSGI в производственной среде

В статье даны рекомендации по настройке uWSGI в производственной среде. Несмотря на свою мощь, настройки uWSGI по умолчанию обусловлены обратной совместимостью и не идеальны для новых развертываний. Много полезных функций могут быть пропущены из-за их большого количества и сложной документации. В этой статье будет предложено создание базовой конфигурацию и ее постепенное расширение

      Сканирующее окно по массивам NumPy

Возможно сделать скользящее окно (rolling window, sliding window, moving window) по массивам NumPy на языке программирования Python без явных циклов. В данной статье рассматривается создание одно-, двух-, трех- и N-мерных скользящих окон по массивам NumPy. В результате скорость обработки данных увеличивается в несколько тысяч раз и сравнима по скорости с языком программирования С.

 

Cкользящее окно применяется в: обработке изображений, искусственных нейронных сетях, интернет протоколе TCP, обработке геномных данных, прогнозировании временных рядов и т.д.

      Как сжать модель fastText в 100 раз

Модель fastText — одно из самых эффективных векторных представлений слов для русского языка. Однако её прикладная польза страдает из-за внушительных (несколько гигабайт) размеров модели. В этой статье мы показываем, как можно уменьшить модель fastText с 2.7 гигабайт до 28 мегабайт, не слишком потеряв в её качестве (3-4%). Спойлер: квантизация и отбор признаков работают хорошо, а матричные разложения — не очень. Также мы публикуем пакет на Python для этого сжатия и примеры компактной модели для русских слов.

      Интеграция Gitlab, Jira и Confluence на Python для автоматизации сборки релизов

Недавно на стендапе коллега внес рацпредложение: автоматизировать сборку релизов, взяв за основу готовые уже наработки по взаимодействию с Jira, написанные на Python.

Процесс деплоя у нас следующий: когда накапливается достаточное количество задач, прошедших тестирование из них собирается Релиз-кандидат (RC) в каждом проекте, затронутом задачами, затем задачи тестируются в составе RC. После этого RC заливается на стейджинг сервер, где в близком к боевому окружении все еще раз тестируется и проводится полный регресс. И затем, после необходимых деплойных действий свежий релиз заливается в мастер.

      Подсчет запросов: Базовое тестирование производительности на Django

Очень часто можно услышать о методах тестирования, таких как TDD, и о том, как тестировать бизнес-логику приложения. Однако тестирование производительности приложения – это совсем другая задача. Есть много разных способов, но самым общим подходом считается создание среды, в которой можно проводить DDoS-атаку на свое приложение и наблюдать за его поведением. Это очень интересная тема, но это не то, о чем я хочу сегодня поговорить. Сегодня мы рассмотрим более простой тест, тот, который вы можете сделать с использованием юнит-тестов Django по умолчанию: то есть тестирование количество обращений вашего приложения к базе данных.

      Сдруживаем Python и Bash: релиз библиотек python-shell и smart-env v. 1.0.1

29 февраля 2020 года состоялся официальный микро-релиз библиотек smart-env и python-shell. Тем, кто не в курсе, предлагаю предварительно прочитать первый пост.

Если вкратце, то среди изменений — автодополнение команд, расширение возможностей по запуску команд, немного рефакторинга и багфиксов.

      Анализ качества работы чат-бота в IBM Watson Assistant

Создание виртуального ассистента, который хорошо бы справлялся с поставленной бизнес-задачей на сегодняшний день, к сожалению, не такой простой процесс, как этого бы хотелось. В первую очередь — далеко не всегда очевидно, из-за чего чат-бот делает ошибки и, что еще более важно, непонятно, как можно минимизировать эти ошибки в сжатые сроки, выделенные на разработку и запуск платформы.

За счет постоянного совершенствования продукта команда IBM Watson Assistant старается сделать процесс создания и запуска виртуального ассистента максимально простым. Сегодня мы расскажем о Dialog Skill Analysis Notebook — фреймворк для Python, который позволяет в кратчайшие сроки разработать высококачественного ИИ ассистента в IBM Watson.

      Строим Data Lake на Amazon Web Services

С развитием мобильных устройств, дешевого и доступного мобильного Интернета, объём генерируемых данных пользователями значительно увеличился. IoT устройства уже реалии нашего времени, а не удел фантастов прошлого века. Большая часть имеющихся данных была произведена в течение последнего десятилетия, мне страшно представить что будет в следующие 10 лет.

Инфографика ниже показывает масштабы этой дата-эпидемии.

      Новостной агрегатор за две недели

18 ноября Telegram запустил соревнование по кластеризации данных: Data Clustering Contest. Нужно было за две недели сделать свой новостной агрегатор. Ограничения, которые были установлены в этом соревновании отпугнули кучу людей, но не меня и моих коллег. Я расскажу от том, каким путём мы прошли, какие выборы сделали и с какими сложностями столкнулись. Решение, которое мы заслали в соревнование обрабатывало 1000 документов за 3,5 секунды, занимало 150 Мб, заняло 6 место на публичном голосовании и 3 место в итоговых результатах. Мы допустили много ошибок, из-за которых не заняли место повыше, большинство из них сейчас исправлены. Весь код и все модели можно найти в репозитории. Все скрипты для обучения моделек перенесены на Colab.

      Как выключить именованные миграции в Django

Вместо 0002_mymodel_myfield.py получаем 0002_auto_20200113_1837.py

      Изучаем английский с помощью Telegram бота

Нет, это не одна из сотен статей о том, как написать свой первый Hello World бот на Python. Здесь вы не найдете подробной инструкции, как получить API-токен в BotFather или запустить бота в облаке. Взамен я вам покажу как раскрутить всю мощь Python на максимум, чтобы добиться максимально эстетичного и красивого кода. Исполним песню про обращение сложных структур — станцуем и спляшем. Под катом асинхронность, собственная система сейвов, куча полезных декораторов и много красивого кода.

      Оптимизация кода на Python с помощью ctypes

Я написал это руководство, поскольку не смог найти такого, которое будет объединять в себе все полезное о ctypes. Надеюсь, эта статья сделает чью-то жизнь намного легче.

      Введение в архитектурный фреймворк для анализа данных Lena

Архитектура определяет наиболее общее устройство программы и взаимодействие её компонентов. Lena как фреймворк реализует конкретную архитектуру для анализа данных (подробнее о ней ниже) и предоставляет пользователю классы и функции, которые могут быть при этом полезны (с учётом данной архитектуры).

 

Lena написана на популярном языке Python и работает с версиями Python 2, 3 и PyPy. Она опубликована под свободной лицензией Apache (версия 2) здесь. В данный момент она ещё разрабатывается, однако описываемое в данном руководстве уже используется, тестировано (общее покрытие всего фреймворка около 90%) и вряд ли будет изменено. Lena возникла при анализе данных экспериментов в физике нейтрино и названа в честь великой сибирской реки.

      Все, что вы хотели узнать об LDPC кодах, но стеснялись спросить (наверное)

С кодами малой плотности проверок на чётность, которые дальше мы будем именовать коротко LDPC (Low-density parity-check codes), мне удалось познакомиться более или менее близко, работая над семестровым научным проектом в ТУ Ильменау (магистерская программа CSP). Моему научному руководителю направление было интересно в рамках педагогической деятельности (нужно было пополнить базу примеров, а также посмотреть в сторону недвоичных LDPC), а мне из-за того, что эти коды были плюс-минус на слуху на нашей кафедре. Не все удалось рассмотреть в том году, и поэтому исследование плавно перетекло в мое хобби… Так я набрал некоторое количество материала, которым сегодня и хочу поделиться!

Видео

      Разработка плагинов к mypy / Владимир Пузаков (Rambler&Co)

Mypy помогает нам писать качественный код. Но не со всеми ситуациями он может справиться в одиночку. Для решения этой проблемы в mypy есть плагины. В данном докладе будет рассказано о ситуациях, в которых их нужно писать. Я покажу, как писать свой плагин для решения этих проблем, какие инструменты есть в mypy для этого, и как тестировать свой плагин

      Micropython для квестов в реальности и аркадных игр / Никита Левонович (КВЕСТОДЕЛЫ)

Квестоделы применяют Micropython для разработки квестов в реальности последнего поколения и аркадных игр. Современный квеструм - это около 15 электронно-вычислительных устройств, общающихся по сети (MQTT). Большинство из этих ЭВУ - микроконтроллеры (ESP32), которые управляют периферийными устройствами: mp3-плееры, реле и различные датчики, и используют устройства ввода-вывода: дисплеи, диоды, кнопки, клавиатуры и многие другие

      Аsync и await в production / Сергей Борисов (ДомКлик)

В "Домклик" больше 50 Python-разработчиков, и мы используем асинхронное программирование с самого начала наших проектов. Польза от корутин с async и await огромна, но вместе с этой пользой приходят специфические сложности. Неожиданно для разработчиков течет память, не ловятся исключения, а доступные "асинхронные" библиотеки для типовых задач часто очень сырые.

Релизы

      django-test-migrations 0.2.0

Пакет для тестирования миграций Django





Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus