Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Волатильность является одним из важнейших параметров в оценке опционов, управлении рисками и построении торговых стратегий. Классическая модель Блэка-Шоулза-Мертона, предполагающая постоянную волатильность, не способна отразить динамику рынка, где наблюдаются эффекты «улыбки волатильности» и кластеризации. Для более точного описания рыночных процессов разработаны модели стохастической волатильности, среди которых наиболее известными являются модель Хестона и модель SABR. Эти подходы учитывают случайный характер изменений волатильности и позволяют более адекватно оценивать деривативы.
(02.03.2020 - 08.03.2020)
Первого апреля в Челябинске стартует школа разработки на языке Python. Это отличная возможность для старта карьеры в IT. Обучение будет включать в себя теоретическую подготовку и разработку учебного проекта. Эксперты поделятся фундаментальными знаниями, необходимыми каждому профессиональному разработчику для создания современных веб-приложений на Python. Они передадут свой опыт, начиная с основ языка, заканчивая разработкой реального проекта на фреймворке Flask. Обучение бесплатное.
Про инструменты визуализации и варианты визуализации
Это обзор функциональности, появившейся в Pillow 5.2: применение трехмерных таблиц поиска (3D lookup tables, 3D LUT) для трансформации цвета. Эта техника широко распространена в обработке видео и 3D-играх, однако мало графических библиотек могли похвастаться их поддержкой до этого.
Трехмерные таблицы поиска дают большую гибкость в описании цветовых трансформаций, но самое главное трансформации выполняются за одинаковое время, какими бы сложными они не были.
В Python существует библиотека Trio – библиотека асинхронного программирования. Знакомство с Trio в основном будет интересно тем, кто работает на Asyncio, потому что это хорошая альтернатива, позволяющая решать часть проблем, с которыми не может справиться Asyncio. В этом обзоре рассмотрим, что из себя представляет Trio и какие фичи она нам дает.
Все люди, получающие высшее образование, не отчислившись, все-таки доходят до стадии написания диплома. Не стал исключением и я. Хотелось реализовать что-то интересное и освоить доселе неизученное, поэтому обратил внимание на тему нейронных сетей и искусственного интеллекта в целом. А задачей, которую я решал с помощью нее, является анализ тональности текста, что и так широко применятся в различных системах мониторинга. Процесс ее решения я и попытаюсь описать в данной статье.
Короче говоря, цель — понять присутствует ли у фразы положительный оттенок или отрицательный. Сразу хочу сказать, что эту задачу можно решать несколькими способами, и не только нейросетями. Можем составлять словари в которых отмечены позиции слов и т.д. (все методы есть на хабре в избытке), но на каждый способов может уйти еще по статье, поэтому оставим их обзор на потом.
В этом коротком туториале мы рассмотрим базовые приёмы работы с GDB, а также посмотрим как можно (и нужно) подготавливать файлы к отладке для GDB.
GDB — переносимый отладчик проекта GNU, который работает на многих UNIX-подобных системах и умеет производить отладку многих языков программирования, включая Си, C++, Free Pascal, FreeBASIC, Ada, Фортран, Python3, Swift, NASM и Rust.
Дисклеймер: автор хотел повеселить себя вечером и не придумал ничего лучше, как:
В качестве корпуса для "обучения" цепи я буду использовать текст песен группы Кис Кис.
REPL (read-eval-print loop) бесполезен в Python, даже если это волшебный IPython. Сегодня я предложу одно из возможных решений этой проблемы. В первую очередь доклад и мое расширение TheREPL будет полезны тем, кого интересует более быстрая и эффективная разработка, а также тем, кто пишет stateful-системы.
Вслед за январским постом встречайте второй выпуск дайджеста. Здесь вас ждёт список англоязычных материалов за февраль, которые написаны без лишнего академизма. Публикации содержат примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и многие из них не требуют сверхмощного железа для тестирования.
Оригинальная статья: Luke Plant – Double-checked locking with Django ORM
Шаблон блокировки с двойной проверкой может быть полезен, когда:
Этот пост о том, как можно реализовать этот шаблон в Django, используя функции ORM и блокировки на уровне базы данных. Шаблон может использоваться с любой другой ORM, но я проверил его только с Django, и подтвердил, что он работает, как и ожидается, используя PostgreSQL.
Методы Монте-Карло для марковских цепей (MCMC) – это мощный класс методов для выборки из вероятностных распределений, известных лишь вплоть до некоторой (неизвестной) нормировочной константы.
Однако прежде, чем углубиться в MCMC, давайте обсудим, зачем вам вообще может понадобиться делать такую выборку. Ответ таков: вам могут быть интересны либо сами образцы из выборки (например, для определения неизвестных параметров методом байесовского вывода), либо для аппроксимации ожидаемых значений функций относительно вероятностного распределения (например, для расчета термодинамических величин по распределению состояний в статистической физике). Иногда нас интересует только мода распределения вероятностей. В данном случае получаем ее методом числовой оптимизации, поэтому делать полную выборку не обязательно.
Cегодня расскажем о своем опыте работы с USB-девайсами через Python PyUSB и немного о реверс-инжиниринге.
Мы живем в неидеальном мире. Здесь код пишут люди, а люди по своей природе склонны совершать ошибки. Все бы ничего, ошибки можно отловить на этапе тестирования и не дать им никому навредить. Можно, если писать тесты. Чего люди делать почему-то не любят. Но возможно, есть надежда — автогенерация тестов из написанного кода.
At Kiwi.com we have lots and lots of Python projects, some important ones are more than 5 years old. With our explosive growth from a small start-up into an international company, it's critical for us to manage code quality at scale. If we find some issue with nginx configuration, we need an automated way to check all projects for it.
Mars tensor provides a compatible interface like Numpy, users can obtain the ability to handle extreme huge tensor/ndarray by simple import replacement. We extend the interface of Numpy to support create tensor/ndarray on GPU by specifying gpu=True on all the implemented array creation, and also, create sparse matrix via noting sparse=True on some array creation like zeros, eye and so on.
Из доклада вы узнаете:
- как устроена система рекомендаций вакансий hh.ru
- как в hh.ru перешли от стандартного полнотекстового поиска к поиску на основе машинного обучения
В гостях у Moscow Python Podcast Василий Панков, руководитель Python разработки в компании Ernst & Young. Поговорили о интеграция Python-приложений с Windows API и зачем нужен Python для работы с приложениями на Windows.
О подключаемом расширении для pytest, позволяющем упростить написание тестов для кода, использующего вызовы requests.
Стохастическая волатильность: как её моделируют? На примере опционов на эфир
Пишем симуляцию по мотивам игры Life
Как увеличить скорость python-скриптов: C-расширения и Python/C API
Сводка от pythonz 26.01.2025 — 02.02.2025
Подключить педали экспрессии к компьютеру за полчаса
Load-testing-hub: инструмент для аналитики нагрузочного тестирования
Вредоносные пакеты deepseeek и deepseekai были опубликованы в Python Package Index
У SAMURAI есть цель — zero-shot решение задачи Visual Object Tracking(VOT)
Avoiding Mocks: Testing LLM Applications with LangChain in Django
pyper: Concurrent Python Made Simple