Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Я обожаю копаться в данных своих тренировок из Strava: анализировать мощность, пульсовые зоны, темп. Но мне всегда не хватало одной вещи — единой, понятной и, главное, прозрачной метрики, которая бы отвечала на простой вопрос: "А насколько я сейчас в хорошей форме?".В этой статье я расскажу, как устроен этот механизм "под капотом".
(16.03.2020 - 22.03.2020)
Сегодня мы предлагаем вам перевод статьи, затрагивающей не самую обсуждаемую тему: компиляцию кода в Python, а именно: работу с абстрактным синтаксическим деревом (AST) и байт-кодом. Притом, что Python является интерпретируемым языком, такие возможности в нем чрезвычайно важны с точки зрения оптимизации. О них мы сегодня и поговорим.
Вы когда-нибудь задумывались, как именно компилятор оптимизирует ваш код, чтобы он работал быстрее? Хотите узнать, что такое абстрактное синтаксическое дерево (AST) и для чего оно может использоваться?
По запросу R или Python в интернете вы найдёте миллионы статей и километровых обсуждений по теме какой из них лучше, быстрее и удобнее для работы с данными. Но к сожалению особой пользы все эти статьи и споры не несут.
Динамическое создание моделей или полей к уже существующей модели в ORM Django редко встречаемая задача, но иногда специфика бизнеса требует ее реализации. К примеру может возникнуть необходимость получение данных из внешней БД и при этом сами данные могут иметь либо очень большее количество полей (более 100), либо иметь постоянно меняющиеся поля. Но вы должны быть осторожны, если пойдете по этому пути, особенно если ваши модели настроены на изменение во время выполнения. В этой статье я рассмотрю ряд вопросов, которые следует учитывать при создание динамических моделей.
В этой статье вы сможете узнать как можно собрать dev-окружение современного SPA приложения с server side рендерингом, на основе фреймворков Django и Nuxt, а также их сообщения посредством GraphQL API.
На примере простейшего приложения со списком задач, я попытался рассказать об основных проблемах с которыми я столкнулся в процессе построения приложения на выбранном стеке.
Хочу рассказать вам, как мы писали и внедряли сервис для мониторинга качества данных. У нас есть множество источников данных: данные с финансовых рынков, торговая активность наших клиентов, котировки и многое другое. Все это генерирует миллиарды записей в день в наших процессах. Полнота и консистентность торговых данных — критический компонент бизнеса Exness.
Если вам близки проблемы обеспечения качества данных и вам интересно, как мы решили эту задачу у себя, то добро пожаловать под кат.
В этой статье я расскажу как за 30 минут настроить среду для машинного обучения, создать нейронную сеть для распознавания изображений a потом запустить ту же сеть на графическом процессоре (GPU).
Для начала определим что такое нейронная сеть.
В наше время большинство детей знакомится с миром программирования через создание проектов на платформе scratch.mit.edu Создание проектов происходит путем соединения разноцветных блоков без ввода кода с клавиатуры (вводим только значения переменных).
Однако, дети взрослеют, им становится тесно в мире Scratch, и в этот момент им можно предложить несколько путей развития.
В этой статье попробуем получить выписки из ФГИС ЕГРН с помощью python (selenium) сразу по нескольким объектам недвижимости, решим капчу с помощью сервиса anticaptcha, используя его api. При встрече с капчей нейросети трогать не будем, так как они могут показаться сложнее в реализации, да и процент «успешных разгадываний» капч с их помощью пока ниже.
Разбираем «под капотом» кастомную фитнес-метрику: от идеи до реализации на Python
Polars — «убийца Pandas» на максималках
CI/CD Pytest для тестирования качества данных здравоохр. в Великобритании
Оптимизация сервиса АБ тестирования.
Как научить Алису рецептам дореволюционной кухни
Обработка результатов моделирования Fire Dynamics Simulator на Python (часть 2)
VibeVoice - Open-Source Text-to-Speech
Memento - Fine-tuning LLM Agents without Fine-tuning LLMs
Предиктивная аналитика в нефтедобыче или как я проходил практику
Визуализация управления памятью в Python: что творится внутри?
Собираем «идеального душнилу»: как создать ИИ-агента, который завалит вашего чат-бота
Какой Python-фреймворк выбрать: Django, Flask или FastAPI?
Comparison of New Python Type Checkers: Ty, Pyrefly, and Zuban
CodeBoarding - Interactive Diagrams for Code