Собрали в одном месте самые важные ссылки
читайте нас в Telegram
(23.03.2020 - 29.03.2020)
Несмотря на всю важность и популярность анализа данных печальная ситуация вокруг вируса COVID-19 еще больше подогрела интерес к этой области. Последние пару месяцев правительства и отдельные люди во всем мире пытаются собрать данные о COVID-19 и построить модели, которые помогут предсказать эффект от вируса на нашу жизнь и экономику, а также понять как спасти жизни и бороться с кризисом.
В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.
С помощью этого руководства мы с помощью Keras, TensorFlow и глубокого обучения научимся на собранном вручную датасете из рентгеновских снимков автоматически определять COVID-19.
Как и многие другие, я искренне беспокоюсь относительно COVID-19. Я заметил, что постоянно анализирую своё состояние и гадаю, подхвачу ли болезнь и когда это произойдёт. И чем больше я об этом беспокоюсь, тем больше это превращается в болезненную игру разума, в которой симптоматика сочетается с ипохондрией
Python, хоть и мощный, но всего лишь инструмент, который позволяет писать выразительный самодокументируемый код, но не гарантирует этого, как не гарантирует этого и соблюдение PEP8. Когда наш, казалось бы, простой интернет-магазин на Django начинает приносить деньги и, как следствие, накачиваться фичами, в один прекрасный момент мы понимаем, что он не такой уж и простой, а внесение даже элементарных изменений требует все больших и больших усилий, а главное, что эта тенденция все нарастает. Что случилось, и когда все пошло не так?
Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?
Скользящее окно (Moving Windows)
В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин более применим — то спасибо.
Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.
В процессе подготовки к курсу «Основы компиляторов» для студентов 4-го курса я изучал различные эзотерические языки программирования. Вот хорошая статья на эту тему. В статье самым интересным мне показался язык Befunge (Крис Пресс, 1993 год), особо отмечу три его особенности
Сейчас программирование все глубже и глубже проникает во все сферы жизни. А возможно это стало благодаря очень популярному сейчас python’у. Если еще лет 5 назад для анализа данных приходилось использовать целый пакет различных инструментов: C# для выгрузки (или ручки), Excel, MatLab, SQL, и постоянно “прыгать” туда сюда вычищая, сверяя и выверяя данные. То сейчас python, благодаря огромному количеству прекрасных библиотек и модулей, в первом приближении благополучно заменяет все эти инструменты, а в связке с SQL так вообще “горы свернуть можно”.
Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.
Будучи одним из самых популярных языков 21-го века, Python, безусловно, обладает множеством интересных функций, которые стоит изучить подробно. Три из них будут рассмотрены сегодня, каждая — теоретически, а потом и на практических примерах.
В гостях у Moscow Python Podcast Андрей Гаврилов, Big Data Python developer в EPAM. Поговорили о сложностях связанных с распределенными вычислениями в Big Data и Data science
Best Shift-Left Testing Tools to Improve Your QA
markitdown: Convert Files and Office Documents to Markdown
Implementing Approximate Nearest Neighbor Search with KD-Trees
SVG-виджеты для tcl/tk. Финальный аккорд. Часть IV
django-liveconfigs - управление настройками в django
Пишем свой PyTorch на NumPy. Часть 1
Царство грибов. Симуляция мицелия на p5py. Битвы гифов. Часть первая
Мэтчинг персонажей. Level Hard
Стратификация: как не облажаться с A/B тестами
Матрица ошибок confusion_matrix() в scikit-learn
Сводка pythonz 15.12.2024 — 22.12.2024