Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Волатильность является одним из важнейших параметров в оценке опционов, управлении рисками и построении торговых стратегий. Классическая модель Блэка-Шоулза-Мертона, предполагающая постоянную волатильность, не способна отразить динамику рынка, где наблюдаются эффекты «улыбки волатильности» и кластеризации. Для более точного описания рыночных процессов разработаны модели стохастической волатильности, среди которых наиболее известными являются модель Хестона и модель SABR. Эти подходы учитывают случайный характер изменений волатильности и позволяют более адекватно оценивать деривативы.
(30.03.2020 - 05.04.2020)
Как бы сильно не развивались технологии, за развитием всегда тянется вереница устаревших подходов. Это может быть обусловлено плавным переходом, человеческим фактором, технологическими необходимостями или чем-то другим. В области обработки данных наиболее показательными в этой части являются источники данных. Как бы мы не мечтали от этого избавиться, но пока часть данных пересылается в мессенджерах и электронных письмах, не говоря и про более архаичные форматы. Приглашаю под кат разобрать один из вариантов для Apache Airflow, иллюстрирующий, как можно забирать данные из электронных писем.
Как можно расширить синтаксис Python и добавить в него необходимые возможности? Прошлым летом на PyCon я постарался разобрать эту тему. Из доклада можно узнать, как устроены библиотеки pytest, macropy, patterns и как они добиваются таких интересных результатов. В конце есть пример кодогенерации с помощью макросов в HyLang — Lisp-образного языка, бегущего поверх Python.
В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.
В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.
Недавно я открыл для себя альтернативу стандартной конструкции "expression_on_true if predicate else expression_on_false", которую я не встречал в справочниках:
Пока наши новинки печатаются в типографии, а офис сидит на удаленке, мы решили поделиться отрывком из книги Пола и Харви Дейтелов «Python: Искусственный интеллект, большие данные и облачные вычисления»
В первой части статьи мы рассмотрели основы работы с утилитой SIP, предназначенной для создания Python-обвязок (Python bindings) для библиотек, написанных на языках C и C++. Мы рассмотрели основные файлы, которые нужно создать для работы с SIP и начали рассматривать директивы и аннотации. До сих пор мы делали обвязку для простой библиотеки, написанной на языке C. В этой части мы разберемся, как делать обвязку для библиотеки на языке C++, которая содержит классы. На примере этой библиотеки мы посмотрим, какие приемы могут быть полезны при работе с объектно-ориентированной библиотекой, а заодно разберемся с новыми для нас директивами и аннотациями.
Сортировку кучей (она же — пирамидальная сортировка) на Хабре уже поминали добрым словом не раз и не два, но это всегда была достаточно общеизвестная информация. Обычную бинарную кучу знают все, но ведь в теории алгоритмов также есть:
n-нарная куча; куча куч, основанная на числах Леонардо; дерамида (гибрид кучи и двоичного дерева поиска); турнирная мини-куча; зеркальная (обратная) куча; слабая куча; юнгова куча; биномиальная куча; и бог весть ещё какие кучи…
Недавно прочитал статью о том, что акции-аутсайдеры (те, что максимально упали в цене за месяц) индекса Мосбиржи имеют бОльшие перспективы роста, нежели в среднем по индексу.
Один преподаватель как-то сказал мне, что если поискать аналог программиста в мире книг, то окажется, что программисты похожи не на учебники, а на оглавления учебников: они не помнят всего, но знают, как быстро найти то, что им нужно.
Возможность быстро находить описания функций позволяет программистам продуктивно работать, не теряя состояния потока. Поэтому я и создал представленную здесь шпаргалку по pandas и включил в неё то, чем пользуюсь каждый день, создавая веб-приложения и модели машинного обучения.
Видел несколько дашбордов по COVID-19, но не нашёл пока главного — прогноза времени спада эпидемии. Поэтому написал небольшой скрипт на Python. Он забирает данные из таблиц ВОЗ на Github'е, раскладывает по странам, строит линии тренда. И по ним делает прогнозы — когда в каждой стране из ТОП 20 по количеству заболевших COVID-19 можно ожидать спада заражений. Писал на скорую руку, так что не обессудьте. Если интересуют результаты — добро пожаловать под cut.
Привет от ODS. Мы откликнулись на идею tutu.ru поработать с их датасетом пассажиропотока РФ. И если в посте Milfgard огромная таблица выводов и научпоп, то мы хотим рассказать что под капотом.
Что, опять очередной пост про COVID-19? Да, но нет. Нам это было интересно именно с точки зрения математических методов и работы с интересным набором данных.
Одна из проблем обучения нейронных сетей — переобучение. Это когда алгоритм научился хорошо работать с данными, которые он видел, а на других он справляется хуже. В статье мы рассказываем, как попытались решить эту проблему, совместив обучение градиентным спуском и эволюционным подходом.
Думаю многие любят знакомиться в соц. сетях и пользуются приложениями (например Tinder), но часто уходит много времени на то, что бы ставить лайки и отправлять первые сообщения. Я считаю что это монотонные действия которые только отталкивают от
общения и знакомства. Если ты программист, зачем быть как все, давай вместе со мной автоматизируем процесс монотонных действий и оставим свое внимание только для приятного общения, но обо всём по порядку.
В этой статье я расскажу как сделать простейшего телеграмм бота на Python для отправки текущей погоды в Москве.
Иногда во время работы над проектом на языке Python возникает желание использовать библиотеку, которая написана не на Python, а, например, на C или C++.
На определённом этапе разработки своей игры я осознал, что мне нужна система диалогов с лицами-аватарами. Поэтому я решил создать генератор лиц на основе знаменитой игры Papers, Please.
Эта статья описывает страдания начинающего процесс изготовления самоходной платформы на базе МК esp8266 с micropython, управляемой через встроенный веб-сервер.
Учимся находить лучшее для своего разбойника при помощи программирования. Также разбираемся, не водит ли нас программа «за нос».
Думаю, что тебя раздражает каждый раз вводить капчу при входе на любимый сайт. И было бы логично предположить, что существует сервис для решения этой проблемы. И действительно, такой есть.
Стохастическая волатильность: как её моделируют? На примере опционов на эфир
Пишем симуляцию по мотивам игры Life
Как увеличить скорость python-скриптов: C-расширения и Python/C API
Сводка от pythonz 26.01.2025 — 02.02.2025
Подключить педали экспрессии к компьютеру за полчаса
Load-testing-hub: инструмент для аналитики нагрузочного тестирования
Вредоносные пакеты deepseeek и deepseekai были опубликованы в Python Package Index
У SAMURAI есть цель — zero-shot решение задачи Visual Object Tracking(VOT)
Avoiding Mocks: Testing LLM Applications with LangChain in Django
pyper: Concurrent Python Made Simple