Собрали в одном месте самые важные ссылки
читайте авторский блог
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
(25.05.2020 - 31.05.2020)
Оригинальная статья: Arpit Bhayani – Building Finite State Machines with Python Coroutines
Конечный автомат (Finite State Machine) – это математическая модель вычислений, которая моделирует последовательную логику. FSM состоит из конечного числа состояний, функций перехода, входных алфавитов, начального и конечного состояний. В области компьютерных наук автоматы используются при проектировании компиляторов, лингвистической обработки, пошаговых рабочих процессов, игрового дизайна, процедур протоколов (например, TCP / IP), программирования на основе событий, разговорного искусственного интеллекта и многих других.
Обработка естественного языка(Natural Language Processing — NLP) сегодня становится очень востребованной, так как людям несомненно проще общаться с машинами также, как они общаются с людьми.
Данная серия статей будет посвящена возможности создания декоратора в языке С++, особенностям их работы в Python, а также будет рассмотрен один из вариантов реализации данного функционала в собственном компилируемом языке, посредством применения общего подхода для создания замыканий — closure conversion и модернизации синтаксического дерева.
В этой простыне все примеры разобраны от совсем простых к более сложным, так что разработчикам с опытом будет скучно. Так же эта «шпаргалка» не заменит на 100% примеры из документации.
В этой статье я расскажу о шести инструментах, способных значительно ускорить ваш pandas код. Инструменты я собрал по одному принципу — простота интеграции в существующую кодовую базу. Для большинства инструментов вам достаточно установить модуль и добавить пару строк кода.
Оригинальная статья: Rocio Aramberri – Optimizing Django ORM Queries
Django ORM (Object Relational Mapping) – одна из самых мощных функций Django. Благодаря ей мы можем взаимодействовать с базой данных, используя код Python вместо SQL.
Я считаю, что бОльшее количество дел мы бы могли совершать, если бы нам предоставляли пошаговые инструкции, которые скажут что и как делать. Сам же вспоминаю в своей жизни такие моменты, когда не мог начаться какое-то дело из-за того, что было просто сложно понять, с чего нужно начинать. Быть может, когда-то давно в интернете ты увидел слова «Data Science» и решил, что тебе до этого далеко, а люди, которые этим занимаются где-то там, в другом мире. Так нет же, они прямо здесь. И, возможно, благодаря людям из этой сферы тебе в ленту попала статья. Существует полно курсов, которые помогут тебе освоится с этим ремеслом, здесь же я помогу тебе сделать первый шаг.
Ну что, ты готов? Сразу скажу, что тебе придется знать Python 3, поскольку его я буду использовать здесь. А также советую заранее установить на Jupyter Notebook или посмотреть, как использовать google colab.
Functools – это библиотека Python, которая предназначена для работы с функциями высшего порядка. Такие функции могут принимать в себя другие функции и возвращать функции. Они помогают разработчиком писать код, который можно переиспользовать. Функции можно использовать или расширять, не переписывая их полностью. Модуль functools в Python предоставляет различные инструменты, которые позволяют добиться описанного эффекта. Например, следующие:
Предлагаем вашему вниманию подборку материалов от python.org о том, с чего начать первые шаги в программировании. Если Вы никогда не занимались программированием раньше, эти материалы для вас. Данные туториалы не предполагают, что у вас есть какой-то опыт. (Если у вас уже есть опыт программирования, посетите Beginners Guide).
Python обычно не рассматривается как компилируемый язык, но на самом деле он является таковым. Во время компиляции исходный код, написанный на Python, преобразуется в байт-код, который потом выполняется виртуальной машиной. Однако, процесс компиляции в Python является довольно простым и не включает в себя множество сложных этапов. Он состоит из следующих шагов в указанном порядке
Это не техническая статья, в ней нет подробного анализа методов и теории. Просто как-то я увлекся машинным обучением и как и многие начинающие в этой теме люди, решил сделать торгового бота. Однако это выросло в нечто большее, чем просто тренировочный проект. Вот обо всем этом я и хочу рассказать.
Вспоминая Докинза, основную идею можно выразить так: если долго держать смерч над помойкой, то может собраться Боинг-747. Появление структуры из хаоса дуриком: перебирая и рекомбинируя всё подряд, из всех бессмысленных и беспорядочных процессов можно увидеть вполне осмысленные и упорядоченные. Если такие процессы каким-либо образом закрепляются и повторяются, то система, еще вчера представлявшая из себя броуновское движение, сегодня начинает выглядеть уже так, как будто ее поведение настроила невидимая рука, и что она совершает какие-то осмысленные с нашей точки зрения действия. При этом никакой руки и близко нет. Она настроила себя сама.
Решил поделиться своим знанием, как можно быстро загрузить большое количество файлов в Google Colab с Google Drive.
Всем известно, что Google Colab отличная бесплатная платформа для обучения и экспериментов над Нейронными Сетями.
В предыдущей статье мы с вами рассмотрели несколько несложных способов ускорить Pandas через jit-компиляцию и использование нескольких ядер с помощью таких инструментов как Numba и Pandarallel. В этот раз мы поговорим о более мощных инструментах, с помощью которых можно не только ускорить pandas, но и кластеризовать его, таким образом позволив обрабатывать большие данные.
В одной из последних статей мы говорили о том, как создать детектор аномалий в Power BI, интегрировав в него PyCaret, и помочь аналитикам и специалистам по анализу данных добавить машинное обучение в отчеты и панели мониторинга без лишних трудозатрат.
В этой статье мы рассмотрим, как с помощью PyCaret и Power BI провести кластерный анализ. Если раньше вы ничего не слышали о PyCaret, начать знакомство с ним вы можете тут.
На самом деле, задача, о которой хочется рассказать, проста до уныния по своей формулировке: нужно было визуализировать данные по продажам отдела e-commerce малой кровью, т.е., читай, практически даром.
Что под этим понимается? Корзины наших магазинов генерят постоянный поток данных об онлайн-продажах в разных регионах мира со всеми вытекающими: разные валюты, часовые пояса, налоги, типы клиентов, виды номенклатуры, заказов и т.д. На самом деле, то же самое генерит любой интернет-магазин, только, возможно, варианты параметров у заказов немного отличаются.
Дообучаем языковую модель GPT2 с помощью Torch
Сводка от pythonz 10.11.2024 — 17.11.2024
Talk Python to Me: #485: Secure coding for Python with SheHacksPurple
7 продвинутых приемов pandas для науки о данных
ichigo - Local realtime voice AI
NanoDjango - single-file Django apps | uv integration
Auto_Jobs_Applier - Agen that automates the jobs application process
Building AI Applications with Enterprise-Grade Security Using RAG and FGA