Выпуск 348

(17.08.2020 - 23.08.2020)

pythondigest.ru: Выпуск 348

Статьи

      Склеиваем несколько фотографий в одну длинную с помощью машинного обучения

В предыдущих статьях был описан шеститочечный метод разворачивания этикеток и как мы тренировали нейронную сеть. В этой статье описано, как склеить фрагменты, сделанные из разных ракурсов, в одну длинную картинку.

      Новая библиотека для уменьшения размерности данных ITMO_FS — зачем она нужна и как устроена

Студенты и сотрудники лаборатории Машинного обучения Университета ИТМО разработали библиотеку для Python, которая решает ключевую задачу машинного обучения.

Расскажем, почему появился этот инструмент и что он умеет.

      Оптимизация инвестиционного портфеля по методу Марковица

Есть много реализаций данного метода. В том числе и на Python. Реализовал еще раз (см. ссылка на GitHub). Можно использовать как заготовку программного кода.

Конечно, приведем стандартную диаграмму облака сгенерированных портфелей.

      Заметки Дата Саентиста: персональный обзор языков запросов к данным

Почему важно знать и уметь обращаться с языками запросов? По своей сути в Data Science есть несколько важнейших этапов работы и самый первый и важнейший (без него уж точно ничего работать не будет!) — это получение или извлечение данных. Чаще всего данные в каком-то виде где-то сидят и их нужно оттуда «достать». 

      Автоматизируем обработку изображений с помощью Jupyter и Python

Недавно мой ребёнок захотел сделать раскраску для персонажа из любимого мультфильма. Очевидным решением было использовать какой-нибудь графический редактор для Linux (потому что я линуксоид), но потом я вспомнил, что я ленивый человек.

К счастью, я знаком с Python и JupyterLab. Посмотрим, насколько Jupyter облегчит задачу.

      Распознавание мяча в волейболе с OpenCV и Tensorflow

После первого опыта распознавания спортивных движений у меня зачесались руки сделать что-нибудь еще в этом направлении. Домашняя физкультура уже казалась слишком мелкой целью, так что я замахнулся на игровые виды спорта.

      Как писать аккуратные конвейеры для машинного обучения

Тема конвейеризации и распараллеливания машинного обучения давно фигурирует у нас в проработке. В частности, интересно, достаточно ли для этого специализированной книги с акцентом на Python, либо нужна более обзорная и, возможно, сложная литература. Мы решили перевести вводную статью об устройстве конвейеров для машинного обучения, содержащую как архитектурные, так и более прикладные соображения. Давайте обсудим, актуальны ли поиски в этом направлении.

      Стабилизация видео с движущейся камеры, или как перевести всё в неподвижную систему координат

Сейчас возможности Computer Vision (CV) полностью перекраивают ландшафт рынка Public Safety solutions. В то время, как традиционными системами видеонаблюдения уже не просто никого не удивить, а странно не найти её в любом общественном месте, использование ИИ в данной области всё ещё вновинку.

      Передача динамических объектов от setup к тестовой функции в py.test

В больших проектах в какой-то момент получается ситуация, когда тестов на проекте уже много и параллельно развивается собственный высокоуровневый фреймворк. Фреймворк, в данном случае, как обертка над функциями объекта тестирования и возможностями различных инструментов которые используются на проекте. Кроме того все папки заполнены фикстурами, многие из которых используются только в одном тестовом файле.

 

В этот прекрасный момент возникают некоторые проблемы. Про одну из них я уже писал, это реализация удобной параметризации, например из файла. Про следующую, из наиболее злосчастных, поговорим в этой статье.

      Бот-викторина для ВКонтакта

Месяца три назад мы с друзьями по сети «ВКонтакте» в общем чате (беседе) играли в угадайку — игру по мультфильму «Смешарики», который мы все любим. Правила: ведущий пишет цитаты персонажей мультика, игроки угадывают из какой серии эта цитата. Я решил сделать игру более интересной, и назначить на роль ведущего бота.

      Почему здравый смысл важнее паттернов, а Active Record не так уж и плох

Так уж вышло, что разработчики, особенно молодые, любят паттерны, любят спорить о том, какой паттерн нужно применять здесь или там. Спорить до хрипоты: это фасад или прокси, а может даже синглтон. А если у вас не чистая, гексагональная архитектура, то некоторые разработчики готовы сжечь на костре Святой Инквизиции.

При этом они забывают, что паттерны — это лишь возможные решения. У паттернов, также как и у любых принципов, есть границы применимости, и важно их понимать. Дорога в ад вымощена слепым и религиозным следованием пусть даже и авторитетным словам.

А наличие во фреймворке нужных паттернов никак не гарантирует их правильного и осознанного применения.





Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus