IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
читайте авторский блог


Новый материал в ленте
  selenium - 4.22.0

Модуль для автоматизации тестирования web-приложений. Скачать можно по ссылке: https://pypi.python.org/pypi/selenium/


Python Дайджест. Выпуск 349

(24.08.2020 - 30.08.2020)

поделиться выпуском 
Дайджест python,

Статьи

  Интерактивная визуализация алгоритмов на базе Jupyter

Jupyter уже давно зарекомендовал себя как удобную платформу для работы в различных областях на стыке программирования, анализа данных, машинного обучения, математики и других. Вот например очень известная книга по анализу данных, состоящая из Jupyter блокнотов. Поддержка , markdown, html дает возможность использовать использовать Jupyter в качестве платформы для удобного оформления научного-технического материала. Преимущество таких блокнотов заключается в интерактивности, возможности сопровождать сухой материал примерами программ, при этом эта интерактивность очень естественна и проста в использовании. В этой статье хотелось бы рассказать про возможность создания в Jupyter анимированных примеров работы различных алгоритмов и привести несколько из них с исходным кодом. В качестве кликбейта алгоритм Дейкстры.

  Как найти количество всех букв на всех знаках вида «въезд в город Х» в стране? Точный способ ответить на такие вопросы

Недавно в рамках одного собеседования мне понадобилось решить задачу, условие которой приведено ниже

  Python и теория множеств

В Python есть очень полезный тип данных для работы с множествами – это set. Об этом типе данных, примерах использования, и небольшой выдержке из теории множеств пойдёт речь далее.

  Анализ сетей с использованием графов

Анализ социальных сетей – это процесс исследования различных систем с использованием теории сетей. Он начал широко применяться именно тогда, когда стало понятно, что огромное количество существующих сетей (социальных, экономических, биологических) обладают универсальными свойствами: изучив один тип, можно понять структуру и любых других сетей и научиться делать предсказания по ним.

  3D ML. Часть 3: датасеты и фреймворки в 3D ML

В этой заметке мы рассмотрим какие существуют основные датасеты в области 3D ML и какие фреймворки для работы с 3D данными могут пригодиться датасаентисту при разработке моделей машинного обучения в данной области.

  Проект Natasha. Набор качественных открытых инструментов для обработки естественного русского языка (NLP)

Два года назад я писал на Хабр статью про Yargy-парсер и библиотеку Natasha, рассказывал про решение задачи NER для русского языка, построенное на правилах. Проект хорошо приняли. Yargy-парсер заменил яндексовый Томита-парсер в крупных проектах внутри Сбера, Интерфакса и РИА Новостей. Библиотека Natasha сейчас встроена в образовательные программы ВШЭ, МФТИ и МГУ.

Проект подрос, библиотека теперь решает все базовые задачи обработки естественного русского языка: сегментация на токены и предложения, морфологический и синтаксический анализ, лемматизация, извлечение именованных сущностей.

  Киоск Raspberry Pi для графического интерфейса на Kivy

Хочется поделиться опытом настройки Raspberry Pi 3B+ в качестве киоска с GUI на базе библиотеки Kivy для Python 3. Почему именно Kivy? Просто мы уже имеем продукт, разработанный на Python, нам бы хотелось добавить к нему графический интерфейс. Стоит отметить, что до Kivy мы перепробовали несколько вариантов, включая wxWidgets и даже браузер на Chromium с веб-приложением. Все эти альтернативы оказались бессильны против Kivy, лёгкой и быстрой. Очень хороший обзор этой библиотеки уже есть на Хабре.

  Как защитить Python-приложения от внедрения вредоносных скриптов

Python-приложения используют множество скриптов. Этим и пользуются злоумышленники, чтобы подложить нам «свинью» — туда, где мы меньше всего ожидаем её увидеть.

Одним из достоинств Python считается простота использования: чтобы запустить скрипт, нужно просто сохранить его в .py-файле и выполнить команду python с этим файлом (например, python my_file.py). Так же легко разбить наш файл, например, на модули my_app.py и my_lib.py и далее для подключения модулей использовать конструкцию import...from: import my_lib from my_app.py.

Однако у этой простоты и лёгкости есть и обратная сторона: чем проще вам выполнять код из разных локаций, тем больше у злоумышленника возможностей для вмешательства.

  Обработка файлов RAW, полученных с камеры Raspberry Pi HQ

Когда большинство людей делает фотографию, им просто нужно нажать кнопку спуска на фотокамере или телефоне, и готовое к просмотру изображение, обычно в известном формате JPEG, почти мгновенно появится на экране. Однако для некоторых случаев требуется больше контроля над получением этого самого JPEG. К примеру, вам может захотеться увеличить или уменьшить активность функции удаления шума, или вам может показаться, что цвета получились не совсем верно.

  Бот в телеграм, озвучивающий ваши эмоции в сообщении

В этой статье я опишу своего бота в телеграм, который работает и сейчас.

  Rust for a Pythonista #3: Python bindings

It is a step-by-step guide on adding Python bindings to a Rust crate, including testing, packaging, and releasing.

  Полноценная игра, сделанная мною в обычной windows консоли

Сегодня я опишу в подробностях, как я сделал игру в командной строке, и насколько хороша она получилась.

  Создаем tumbnails для видео с python и opencv

Порой, разбирая завалы больших и малых видеофайлов в папке(папках) нет времени заглядывать в содержимое каждого файла. Тут на ум приходят так называемые thumbnails, которые позволяют в виде нарезки фрагментов из видео, создать представление о содержимом.

Создадим небольшую программу, которая создаст thumbnails для каждого из файлов в текущей папке windows, и добавит timeline к вырезанным файлам.

Видео

  Трейсинг в микросервисной архитектуре на Python

Будут затронуты следующие темы: основная идея трейсинга микросервисов в контексте APM (application performance management), основные понятия в трейсинге на примере OpenTracing и Jaeger; краткий обзор существующих инструментов, библиотек для трейсинга. Как обеспечить 80% трейсинга и почти не писать код; особенности подготовки к трейсингу кода многопоточных и асинхронных (Tornado и Asyncio) приложений; советы по тестированию кода с трейсингом; краткий обзор будущего трейсинга — OpenTelemetry

  ORM vs plain SQL, why not both?

Буду рассказывать о ложной дихотомии ORM и запросов в голом SQL. Расскажу, как Django с одной стороны и aiohttp+asyncpg с другой позволяли нам катиться как угорелые

  Moscow Python Podcast. Портируем код с Python2 на Python3 (level: senior)

В гостях у Moscow Python Podcast Tech Lead компании Яндекс Сергей Захарченко. Поговорили о том, как быть и что делать, если нужно перейти со второй на третью версию Python и почему это может быть нужно.