Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Установка Arch Linux на ZFS всегда была не очень тривиальным делом: нужно знать много тонкостей, прочитать кучу статей и различные вики, разобраться с флагами создания датасетов и пула, с конфигурацией initramfs и с тем, какие systemd сервисы стоит включать, с параметрами командной строки ядра и правильными конфигами. Если ставить вручную, то установка занимает целый вечер, с вдумчивым раскуриванием мануалов перед черной консолью. А можно ли проще?
(09.11.2020 - 15.11.2020)
В градиентном бустинге прогнозы делаются на основе ансамбля слабых обучающих алгоритмов. В отличие от случайного леса, который создает дерево решений для каждой выборки, в градиентном бустинге деревья создаются последовательно. Предыдущие деревья в модели не изменяются. Результаты предыдущего дерева используются для улучшения последующего. В этой статье мы подробнее познакомимся с библиотекой градиентного бустинга под названием CatBoost.
Дерево решений — тип контролируемого машинного обучения, который в основном используется в задачах классификации. Дерево решений само по себе — это в основном жадное, нисходящее, рекурсивное разбиение. «Жадное», потому что на каждом шагу выбирается лучшее разбиение. «Сверху вниз» — потому что мы начинаем с корневого узла, который содержит все записи, а затем делается разбиение.
Совсем недавно мы (команда разработчиков KivyMD) создали на GitHub KivyMD-Extension — организацию, в которой размещаются репозитории пользовательских дополнений для библиотеки KivyMD. Это пакеты компонентов, которые не связаны напрямую со спецификацией материального дизайна, но используют под капотом библиотеку KivyMD и существенно расширяют ее. О нескольких таких пакетах я расскажу сегодня.
При создании дерева решений из данных алгоритм ID3 использует индекс, называемый информационной энтропией, чтобы определить, какой атрибут следует использовать для ветвления с наиболее эффективным распределением данных.
В начале, определимся с понятием объем информации. Интуитивно понятно, что объем данных = сложность, запутанность данных. Дерево решений собирает данные с одинаковыми значениями классов с каждого ветвления, таким образом снижая степень запутанности значений класса. Следовательно, при выборе атрибута, согласно которому лучше всего проводить ветвление, опираться стоит на то, насколько простыми стали данные после разветвления.
Интерес к теме машинного обучения и искусственного интеллекта неуклонно растет. Ежедневно в новостных сводках мы читаем про победу искусственного интеллекта над человеком. Как правило, описывается решение некоторой сложной задачи (челенджа). От жгучего желания воспроизвести результаты статьи во благо человечества (или своего собственного) в 99% случаев отговаривает отсутствие датасета, деталей реализации алгоритма и мощного железа (порой сотни единиц специализированных устройств для тензорных вычислений).
Эта статья внеплановая. В прошлый раз я рассматривал нюансы и проблемы различных методов нормализации данных. И только после публикации понял, что не упомянул некоторые важные детали. Кому-то они покажутся очевидными, но, по-моему, лучше сказать об этом явно.
Не так давно я писал про волейбольный сервис, теперь пришло время описать его с технической точки зрения.
Возможно, общественное сознание найдет изъяны в архитектуре и подтолкнет к лучшим решениям.
Мы рады объявить о релизе Delta Lake 0.4.0, в котором представлен Python API, улучшающий манипулирование и управление данными в Delta-таблицах.
Arch Linux на ZFS для людей: новый TUI-установщик archinstall_zfs
Сводка от pythonz 24.08.2025 — 31.08.2025
Паттерны проектирования в Python, о которых следует забыть. Часть вторая
Inside CPython's attribute lookup
Обработка результатов моделирования Fire Dynamics Simulator на Python (часть 1)
Using SQLModel Asynchronously with FastAPI (and Air) with PostgreSQL
Тихий герой воскресного утра: как bash-скрипт спас нас от OOM Killer
Делаем аутентификацию без push и SMS: звонок с диктовкой кода роботом
dj-toml-settings - Load Django settings from a TOML file