Собрали в одном месте самые важные ссылки
читайте авторский блог
(06.09.2021 - 12.09.2021)
В предыдущей статье я писал веб-приложение и совершенно бездумно реализовал там авторизацию, построенную на JWT. В этой статье я хотел бы устроить небольшое погружение в технические детали того, как это устроено, перебрать разные альтернативы.
Достаточно несложно в React нарисовать форму, где можно позволить пользователям вводить свои учетные данные, включающие в себя логин и пароль. Не стоит практически никаких усилий, чтобы на Django сверить пароль, соответствующий логину в базе данных. Но что дальше? Обзор получился достаточно объемный с примерами кода, которые помогут воссоздать реализацию всех схем аутентификации/авторизации.
С тех пор, как мы анонсировали JetBrains DataSpell в марте, наша новая IDE для Data Science была доступна для ограниченного числа пользователей, которые помогали нам с тестированием IDE и обратной связью. Сегодня мы запускаем программу раннего доступа для всех желающих. Всем, кто хотел участвовать в программе, придут приглашения. Вы можете скачать свежую EAP-сборку на сайте JetBrains DataSpell (регистрация не требуется).
Начался новый учебный год, и преподавателям, студентам и школьникам, возможно, требуется (или просто хочется) посмотреть на то, как выглядят орбитальки, на которых сидят электроны в атомах: все эти завораживающие буковки s, p, d, f, и т.д. Да, картинок полно как в учебниках, так и в Интернете, но покрутить орбитальки на картинке не получится, а картинку из учебника/с левого сайта в презентацию/реферат без мороки с лицензией пихать (по-хорошему) не стоит. Поэтому в этом посте мы разберём одну из возможных реализаций рисовалки для этих самых орбиталек.
Kedro — фреймворк модульного кода в Data Science. С его помощью вы можете создавать проекты по шаблону, настраивать конвейер в YAML, делить его на части, документировать проект — и это далеко не всё.
Руководство? Гайд? В общем описание моего опыта создания :)
Python предоставляет программисту огромное пространство свободы. Увы, обычно это довольно дорогая в плане производительности свобода, зато при правильном применении иногда она позволяет творить сущую магию. Но сегодня мы поговорим не о таких вот «богоугодных» применениях свободы, а о том, что никогда не стоит использовать в прикладном программировании — о модификациях кода на уровне AST.
Когда мы работаем с API-схемами, обычно существует несколько моделей, и они синхронизируются на разных уровнях. Обычно есть база данных, код и схема. И всё это нужно держать между собой в синхроне, чтобы они нормально друг с другом взаимодействовали.
Я расскажу об обычных проблемах, с которыми люди сталкиваются при использовании API-схем. Как можно использовать API-схемы для описания property-based-тестов, и чем здесь может помочь Schemathesis. И покажу на практике, как его можно интегрировать в существующий проект.
Однажды я играл в игру "Слово", основная суть которой заключается в составлении слов из прилегающих друг к другу букв, которые даны на игровом поле 5 на 5. И ко мне пришла идея о создании программы, которая могла бы автоматически решать поставленную задачу. В итоге был реализован shortcut на iPhone1, который совместно с дополнительными программами помогает находить слова.
Пользователи iFunny ежедневно загружают в приложение около 100 000 единиц контента, среди которого не только мемы, но и расизм, насилие, порнография и другие недопустимые вещи.
Раньше мы отсматривали это вручную, а сейчас разрабатываем автоматическую модерацию на основе свёрточных нейросетей. Систему уже обучили на разделение контента по трём классам: она распознает, что пропустить в ленты пользователей, что удалить, а что скрыть из общей ленты. Чтобы сделать алгоритмы точнее, решили добавить конкретизацию причины удаления контента, у которого до этого не было подобной разметки.
А теперь о том, что происходило в последнее время на других ресурсах.
В один прекрасный день я сидел и прикидывал в голове, сколько и чего надо съесть, чтобы получилось 30 гр. белка, 25 гр. жиров и 60 гр. углеводов. Из продуктов у меня были: гречка, яйца и авокадо. Json (БЖУ указанно на 100 гр. сырого продукта):{"Гречка": {"Белки": 11.7, "Жиры": 2.7, "Углеводы": 75}, "Яйца": {"Белки": 12.7, "Жиры": 11.5, "Углеводы": 0.7}, "Авокадо": {"Белки": 2, "Жиры": 15, "Углеводы": 9}}Если вы программист, возможно, вам будет интересно остановиться на чтении и прикинуть, как бы вы ее решали. Статья рассказывает об одном из способов.
Dear PyGui принципиально отличается от других фреймворков GUI Python. Рендеринг на GPU, более 70 виджетов, встроенная поддержка асинхронности — это лишь некоторые возможности Dear PyGui. Руководством по работе с этим пакетом делимся к старту курса по разработке на Python.
В первой части статей о python-культуре мы писали про Тинькофф, а в этот раз решили рассказать о компании, в которую инженеры приходят, чтобы решать действительно сложные задачи, например, применение AI для распознавания болезней.
На сегодняшний день существует несколько тысяч языков программирования, каждый из которых создавался с определенной целью, пытаясь изменить и улучшить недостатки своих предшественников. Так, например, появился язык Kotlin, который был нацелен на замену Java в мобильной разработке. В 2010 году увидел свет язык Rust, разработчики которого пытались создать быстрый и безопасный язык, который закрывал бы многие недостатки C/C++.
markitdown: Convert Files and Office Documents to Markdown
Best Shift-Left Testing Tools to Improve Your QA
statsmodels: Statistical Modeling and Econometrics in Python
htmy: Async, Pure-Python Rendering Engine
SVG-виджеты для tcl/tk. Финальный аккорд. Часть IV
django-liveconfigs - управление настройками в django
Царство грибов. Симуляция мицелия на p5py. Битвы гифов. Часть первая
Пишем свой PyTorch на NumPy. Часть 1
Implementing Approximate Nearest Neighbor Search with KD-Trees
Мэтчинг персонажей. Level Hard
Стратификация: как не облажаться с A/B тестами