Собрали в одном месте самые важные ссылки
читайте авторский блог
Python генератор документации. Скачать можно по ссылке: https://pypi.python.org/pypi/Sphinx/
(25.10.2021 - 31.10.2021)
Допустим, вам нужно найти случайную точку с равномерным распределением в круге. Как же это сделать лучше всего? Когда я впервые начал изучать эту задачу, я работал над программным проектом, требовавшим случайного распределения значений в круге, но довольно быстро я спустился в неожиданно глубокую кроличью нору, заполненную любопытной математикой, поэтому решил объединить все свои находки в одну статью.
Профилирование позволяет оценить время, затрачиваемое на выполнение отдельных операций в программе. Профилирование можно выполнять как для всего кода, так и для его фрагментов.
Обучение с подкреплением молодая и бурно растущая дисциплина. Это обстоятельство привело к тому что информации об этом мало на английском и почти нет на русском языке. Особенно, если дело касается объектно-ориентированного подхода, и практических задач не из арсенала Open Gym. Стало интересно, как решать задачи RL в других средах.
Обычно, начиная проект на Java (или любой другой проект), вы не хотите заново изобретать колесо. Вы де-факто выбираете систему сборки, структуру папок, окружение и т.д. То, что использует весь остальной мир.
По словам автора, фреймворк PyTorch Lightning был разработан для разработчиков и академических исследователей, работающих в области ИИ. Применение этого фреймворока упрощает написание кода, в частности нейронных сетей, и делает его более понятным для восприятия, вместе с тем открывая широкие возможности для создания масштабируемых моделей глубокого обучения, которые можно легко запускать на распределенном оборудовании.
Уже не раз поднимали тему распознавания паспортов, и даже заявляли о том, что тема закрыта.
Вопрос в том, что даже сейчас паспорта продолжают распознавать в ручном режиме - в тех же банках на потоке этим может заниматься целый отдел. Аргумент - все системы выдают ошибки.
Не так давно (а именно 4 октября 2021 года) официально увидела свет юбилейная версия языка python, а именно версия 3.10. В ней было добавлено несколько изменений, а самым интересным (на мой взгляд) было введение pattern matching statement (оператор сопоставления с шаблонами). Как гласит официальное описание этого оператора в PEP622, разработчики в большей мере вдохновлялись наработками таких языков как: Scala, Erlang, Rust.
Для тех, кто еще не знаком с данным оператором и всей его красотой, предлагаю познакомиться с pattern matching в данной статье.
В этой статье мы разберемся, что такое "робот", поймем, как они помогают операционистам, напишем и запустим простого робота на Python.
Исходный код робота и данные для работы можно скачать здесь.
Иногда у нас встречаются задачи по подсчету клиентопотока. Мы можем считать очереди, заполнение общественных мест и т.д.
Представим, что нам поставили задачу посчитать поток машин в определенном месте в разное время. На ум приходит только то, что человеку фактически придется вручную произвести примерный расчет по тем или иным показателям.
Давайте попробуем автоматизировать данную задачу, так как на текущий момент у нас есть огромное количество инструментов и вычислительных мощностей.
Не так давно увидела свет версия языка пайтон 3.10. В ней был добавлен pattern matching statement (оператор сопоставления с шаблонами). Как гласит официальное описание этого оператора в PEP622, разработчики в большей мере вдохновлялись наработками таких языков как: Scala, Erlang, Rust.
Многие, в том числе и я, встретили оператор с критикой. Можно для примера почитать комментарии к недавнему посту. В основном люди жалуются на синтаксис, который похож на синтаксис пайтона, однако означает совершенно другое.
Каждый ручной тестировщик считает, что автоматизация — это круто и её непременно нужно втащить в проект. Что может быть лучше, чем полное покрытие автотестами продукта, когда тесты гоняются 24/7 и отлавливают баги? Вот прочитал я эти строки, и захотелось ещё раз всё заавтоматизировать!
В гостях у Moscow Python Podcast старший владелец продукта компании Сибур Диджитал Вадим Щемелинин. Поговорили с Вадимом о Индустрии 4.0, видеоаналитике в нефтехимии и о многом другом.
Простыми словами о методе максимального правдоподобия и информации Фишера
Автомодерация изображений: как исправлять нарушения, сохраняя количество и качество контента
Смогу ли я уложить оптимизирующий компилятор в тысячу строк питона? Прогон первый: mem2reg
Как создать скрипт-beautifier в Ghidra на Python?
Сводка pythonz 09.02.2025 — 16.02.2025
Порядок работы с устареванием ML моделей. Шаг 2: Создание надежных и долговечных моделей
Моделирование управления AC двигателя — Field oriented control of PMSM с помощью opensource решений
Обучить модель RoBERTa расстановке запятых на балконе для продакшена
oumi - обучение и работа с моделями с нуля