Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
(25.10.2021 - 31.10.2021)
В этой статье мы разберемся, что такое "робот", поймем, как они помогают операционистам, напишем и запустим простого робота на Python.
Исходный код робота и данные для работы можно скачать здесь.
Профилирование позволяет оценить время, затрачиваемое на выполнение отдельных операций в программе. Профилирование можно выполнять как для всего кода, так и для его фрагментов.
Обучение с подкреплением молодая и бурно растущая дисциплина. Это обстоятельство привело к тому что информации об этом мало на английском и почти нет на русском языке. Особенно, если дело касается объектно-ориентированного подхода, и практических задач не из арсенала Open Gym. Стало интересно, как решать задачи RL в других средах.
Иногда у нас встречаются задачи по подсчету клиентопотока. Мы можем считать очереди, заполнение общественных мест и т.д.
Представим, что нам поставили задачу посчитать поток машин в определенном месте в разное время. На ум приходит только то, что человеку фактически придется вручную произвести примерный расчет по тем или иным показателям.
Давайте попробуем автоматизировать данную задачу, так как на текущий момент у нас есть огромное количество инструментов и вычислительных мощностей.
Не так давно увидела свет версия языка пайтон 3.10. В ней был добавлен pattern matching statement (оператор сопоставления с шаблонами). Как гласит официальное описание этого оператора в PEP622, разработчики в большей мере вдохновлялись наработками таких языков как: Scala, Erlang, Rust.
Многие, в том числе и я, встретили оператор с критикой. Можно для примера почитать комментарии к недавнему посту. В основном люди жалуются на синтаксис, который похож на синтаксис пайтона, однако означает совершенно другое.
Обычно, начиная проект на Java (или любой другой проект), вы не хотите заново изобретать колесо. Вы де-факто выбираете систему сборки, структуру папок, окружение и т.д. То, что использует весь остальной мир.
Допустим, вам нужно найти случайную точку с равномерным распределением в круге. Как же это сделать лучше всего? Когда я впервые начал изучать эту задачу, я работал над программным проектом, требовавшим случайного распределения значений в круге, но довольно быстро я спустился в неожиданно глубокую кроличью нору, заполненную любопытной математикой, поэтому решил объединить все свои находки в одну статью.
Каждый ручной тестировщик считает, что автоматизация — это круто и её непременно нужно втащить в проект. Что может быть лучше, чем полное покрытие автотестами продукта, когда тесты гоняются 24/7 и отлавливают баги? Вот прочитал я эти строки, и захотелось ещё раз всё заавтоматизировать!
По словам автора, фреймворк PyTorch Lightning был разработан для разработчиков и академических исследователей, работающих в области ИИ. Применение этого фреймворока упрощает написание кода, в частности нейронных сетей, и делает его более понятным для восприятия, вместе с тем открывая широкие возможности для создания масштабируемых моделей глубокого обучения, которые можно легко запускать на распределенном оборудовании.
Уже не раз поднимали тему распознавания паспортов, и даже заявляли о том, что тема закрыта.
Вопрос в том, что даже сейчас паспорта продолжают распознавать в ручном режиме - в тех же банках на потоке этим может заниматься целый отдел. Аргумент - все системы выдают ошибки.
Не так давно (а именно 4 октября 2021 года) официально увидела свет юбилейная версия языка python, а именно версия 3.10. В ней было добавлено несколько изменений, а самым интересным (на мой взгляд) было введение pattern matching statement (оператор сопоставления с шаблонами). Как гласит официальное описание этого оператора в PEP622, разработчики в большей мере вдохновлялись наработками таких языков как: Scala, Erlang, Rust.
Для тех, кто еще не знаком с данным оператором и всей его красотой, предлагаю познакомиться с pattern matching в данной статье.
В гостях у Moscow Python Podcast старший владелец продукта компании Сибур Диджитал Вадим Щемелинин. Поговорили с Вадимом о Индустрии 4.0, видеоаналитике в нефтехимии и о многом другом.
Python Dictionary Comprehensions: How and When to Use Them
30k аудиозаписей: наводим порядок
Кроссплатформенные приложения на Python с Flet и FastAPI: Полное руководство по разработке
Pygame для начинающих программистов. Статья вторая. События
Python⇒Speed: Using portable SIMD in stable Rust
pytest-metadata: Plugin for Accessing Test Session Metadata
mininterface: A Minimal Interface to Python Application
Автоматизированное тестирование API с использованием Python. Работа с JSON и JsonPath
ML in Go with a Python sidecar