Собрали в одном месте самые важные ссылки
читайте авторский блог
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
(17.01.2022 - 23.01.2022)
Мы избалованы выбором в работе с данными. Инструмент номер один — Pandas, затем идут Dask, Vaex, Datatable, cuDF и так далее. К этому списку добавим Terality, как будто всего этого недостаточно.
Возникает вопрос: Terality компенсирует скорость Pandas ценой её простоты и гибкости? Нет. Terality — это злой кузен Pandas, рождённый с суперсилой. У него похожий синтаксис, но работает он молниеносно и не зависит от мощности вашей машины. Звучит слишком хорошо, чтобы быть правдой? Тогда читайте. Эта статья не оплачена и отражает мой собственный взгляд.
Сначала разберемся немножко с теорией: что за такие модули для Ansible и что в Ansible есть ещё расширяемого, кроме модулей, чтобы не путаться в том, что мы можем написать для Ansible.
Простые числа, согласно известному определению – такие числа, которые делятся только на 1 и само себя. Иначе, число считается составным, и его можно разложить на произведение простых чисел. Единица формально соответствует определению простого числа, но это число принято не относить ни к простым, ни к составным.Как искать простые числа? Можно действовать напрямую, применяя определение: просто делить каждое данное число N подряд на все числа m<N.Такая стратегия тоже имеет смысл, и ее можно обсуждать, и даже думать о том, как ее совершенствовать, но сегодня у нас будет другая история.
Устав искать нормальный портативный инструмент для переключения между моим рабочим прокси-сервером и прямым подключением дома (который, к тому же, работал бы на Windows и Linux), я решил-таки запилить собственную тулзу для этих целей. Вооружившись Python и Qt, начал клепать код в VSCode... Что из этого вышло -- читаем под катом.
Итак, сегодня мы поговорим о генерации пещер и карт высот с помощью шума. Это будет Гауссовский шум, его легче всего сделать в Python Pillow.
Здесь лежит окончание "расследования" Новогодний детектив: странный хайзенбаг в «питоньих» часах.
Изначально хотел просто обновить статью и написать соответствующий комментарий, но понял что апдейт выходит чуть не длиннее самой статьи.
В конце прошлого года поступил запрос на рассмотрение интересного кейса: спрогнозировать объем продаж продукта на рынке при динамическом ценообразовании.
При обработке данных исходного DataSet часто попадаются аномальные значения, которые поставлены вместо пропусков, и мало того, что они скрываются, так ещё и несут вред общему делу. В данной статье будет разобран практический пример избавления от аномальных значений в связанных с географией данных при помощи инструментов известной библиотеки Pandas.
Генерация 3D-моделей из текстового описания и видеозаписей, сделанных на обыкновенный смартфон, конкурент DALL-E, ускоренная GAN-инверсия и многое другое в подборке материалов за декабрь, а также небольшие новости о будущем дайджеста.
Когда речь заходит о тяжелой промышленности и технологиях в ней, в большинстве случаев мы ожидаем услышать Java, а может быть и Java EE, или наоборот что-то очень низкоуровневое. Именно такие предположения я чаще всего слышу от друзей, когда рассказываю, где работаю.
Современный человек много чем занимается в интернете: ходит по магазинам, слушает музыку, читает новости. Все эти задачи подразумевают поиск и выбор того, что ему нужно. При этом важную роль тут играют рекомендательные системы. Они помогают людям не утонуть в многообразии вариантов и увидеть именно то, что им подойдёт, то, что иначе им сложно было бы найти.
Хочу рассмотреть кейс, когда разработчик приходит на проект, а там: автоматизации тестов — нет и команда не хочет ее внедрять; cd/ci — нет и не предвидится. Хочу обсудить: типовые причины, которые приводят к такой ситуации; проблемы, которые будут у разработчиков. Слайды: https://moscowpython.ru/meetup/76/fight-for-autotests/
PostgreSQL — наиболее популярная база данных, которая используется в Python разработке сейчас. Не все разработчики знают, с какими нюансами можно столкнуться при ее использовании. В докладе будет много полезной информации по тому как правильно настроить PostgreSQL под ваш проект чтобы повысить ее эффективность и надежность. Слайды: https://moscowpython.ru/meetup/76/postresql-basics/
Двусвязный список в Python: простой инструмент для сложных задач
Мой первый и неудачный опыт поиска торговой стратегии для Московской биржи
Chronos от Amazon: революция в обработке временных рядов
Дообучаем языковую модель GPT2 с помощью Torch
Сводка от pythonz 10.11.2024 — 17.11.2024
Talk Python to Me: #485: Secure coding for Python with SheHacksPurple
7 продвинутых приемов pandas для науки о данных
ichigo - Local realtime voice AI
NanoDjango - single-file Django apps | uv integration