Собрали в одном месте самые важные ссылки
читайте авторский блог
Волатильность является одним из важнейших параметров в оценке опционов, управлении рисками и построении торговых стратегий. Классическая модель Блэка-Шоулза-Мертона, предполагающая постоянную волатильность, не способна отразить динамику рынка, где наблюдаются эффекты «улыбки волатильности» и кластеризации. Для более точного описания рыночных процессов разработаны модели стохастической волатильности, среди которых наиболее известными являются модель Хестона и модель SABR. Эти подходы учитывают случайный характер изменений волатильности и позволяют более адекватно оценивать деривативы.
(25.04.2022 - 01.05.2022)
Давно ничего не писал. Обещанного в прошло статье бота закончил, проект оказался довольно сложным, но опыта и знаний заметно прибавилось. А значит время начать новый проект! В этот раз, вдохновившись глубочайшими мыслями японских поэтов-философов, мы будем делать бота, который не просто постит хокку, а сам пишет и подбирает картинку по теме. Строго говоря, бот не придумывает хокку, а формирует новые из уже существующих, но хуже, как мне кажется, он от этого не становится. Итоговый код я оставлю на своём GitHub, а за работой бота можно следить в этом Телеграм канале. Подпишитесь, очень хочу, чтобы этот канал набрал аудиторию.
Dash представляет собой фреймворк для визуализации данных и построения веб-приложений, понятен и довольно прост в применении. Может быть интересен тем, кто хочет использовать интерактивные графики для анализа данных с помощью Python. Рассмотрим построение таких графиков с применением обратных вызовов в Dash.
Многим приходилось сталкиваться с необходимостью анализа большого количества данных при помощи Python по запросам начальства или коллег. Однотипные запросы поступают с определенной периодичностью, и не составляет труда подставить новые данные в свой код и провести анализ. Но иногда из-за определенной нагрузки не всегда хочется заниматься таким анализом. Намного проще сделать скрипт с графическим интерфейсом, чтобы сам заказчик для анализа данных мог нажать пару кнопок и получить желаемый результат. Тем более, можно изначально вложить в интерфейс столько «хотелок» заказчика для анализа, сколько будет душе угодно.
Перед вами вторая часть из серии материалов, состоящей из двух публикаций. Здесь я предлагаю практическое руководство по архитектуре ML-проекта, освоение которого позволит вам оценить качество автоматического реферирования (суммаризации) текстов в той области, в которой вы работаете.
Недавно мне потребовалось пересобрать N парсеров в один. В нем должен быть родитель и N детей, а также возможность использовать функции сразу всех подпарсеров.
Спойлер: это было непросто! В статье расскажу о проблемах, с которыми столкнулся, а также объясню, как устроен модуль argparse в Python 3 и что он умеет.
Это продолжение серии статей об анализе данных персональных тренировок из набора FIT-файлов, которые создаются при использовании носимых устройств (фитнес-браслеты, часы, смартфоны, велокомпьютеры). В предыдущих двух я рассказывал о том, как получить доступ к данным совершенных тренировок и как можно визуализировать показатели на графике.
Отсутствующее значение в наборе данных отображается как вопросительный знак, ноль, NaN или просто пустая ячейка. Но как можно справиться с недостающими данными?
Конечно, каждая ситуация отличается и должна оцениваться по-разному.
К прошлой статье закономерно возник ряд вопросов, и, перед тем как продолжить рассказ о внутривенном курсе отечественного велосипедостроения внесу ряд важных уточнений. Как мне показалось, постановка задачи была достаточно понятной. Со временем оказалось, что всё-таки показалось.
В студенческие годы я написал на заказ много парсеров магазинов и социальных сетей. Со временем парсеры усложнялись и из скриптов превращались в полноценные веб-приложения c базой данных и Rest API. В статье описан шаблон веб-приложения, который использую для создания парсеов.
Что появилось первым: курица или яйцо?
Статистики давно уже нашли ответ на этот вопрос.
Причем несколько раз.
И каждый раз ответ был разным.
Я живу в Москве и у меня во дворе, как и у многих, установлен шлагбаум. Некоторое время назад я задался вопросом, как мне упростить процесс его открытия? Хотелось, чтобы можно было добавлять это действие в сценарии умного дома, открывать по кнопке в авто, давать друзьям возможность открывать его самостоятельно и т.д. Частично я решил проблему еще в прошлом году, но недавно всё "допилил" и решил поделиться.
Нужно найти в docx-файле определенный фрагмент и оставить к нему комментарий? bayoo-docx (форк python-docx) умеет это! В конце статьи в виде бонуса расскажем, как определить номер страницы. 😊
Поток информационных новостей сыпется со всех сторон. Поиск достоверной информацией становится всё затруднительнее. Для того, чтобы сделать правильный выбор необходимо лучше всего опираться на первоисточник. В мире экономики и финансов, пожалуй, одним их главных источников является Центральный Банк России. У Банка России реализован веб-сервис для получения ежедневных данных.
В декабре 2021 года Github объявил, что открывает общий доступ к точной навигации по коду для всех публичных и приватных репозиториев с Python на сайте GitHub.com. Точную навигацию в коде обеспечивают стековые графы, новый фреймвввооорк с открытым исходным кодом, созданный в Github и позволяющий устанавливать правила привязки имен для языка программирования при помощи декларативного предметно-ориентированного языка (DSL). Стековые графы позволяют генерировать данные о навигации по стеку для конкретного репозитория, не требуя при этом какого-либо участия в конфигурировании со стороны владельца репозитория и не вмешиваясь в процесс сборки или другие задания, связанные с непрерывной интеграцией. В этом посте будет подробно рассказано, как работают стековые графы, и как с их помощью достигаются такие результаты.
В гостях у Moscow Python Podcast Python руководитель разработки компании Магнит Антон Огородников. Обсудили с Антоном, как в Магните используют генерацию кода из OpenAPI спецификации, сбор метрик и как обстоят дела с генерацией кода в Python и Go.
Generate arbitrary queries matching your GraphQL schema, and use them to verify your backend implementation.
Стохастическая волатильность: как её моделируют? На примере опционов на эфир
Пишем симуляцию по мотивам игры Life
Как увеличить скорость python-скриптов: C-расширения и Python/C API
Сводка от pythonz 26.01.2025 — 02.02.2025
Подключить педали экспрессии к компьютеру за полчаса
Load-testing-hub: инструмент для аналитики нагрузочного тестирования
Вредоносные пакеты deepseeek и deepseekai были опубликованы в Python Package Index
У SAMURAI есть цель — zero-shot решение задачи Visual Object Tracking(VOT)
Avoiding Mocks: Testing LLM Applications with LangChain in Django
pyper: Concurrent Python Made Simple