IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
консультируем про IT, Python


Новый материал в ленте
  Speeding Up Data Retrieval From PostgreSQL With Psycopg

Formatting and concatenating query result columns on the PostgreSQL side and then parsing them in Python might sometimes be faster than fetching the columns as separate values.


Python Дайджест. Выпуск 436

(25.04.2022 - 01.05.2022)

поделиться выпуском 
Дайджест python,

Статьи

  Открываем шлагбаум кнопкой на руле автомобиля

Я живу в Москве и у меня во дворе, как и у многих, установлен шлагбаум. Некоторое время назад я задался вопросом, как мне упростить процесс его открытия? Хотелось, чтобы можно было добавлять это действие в сценарии умного дома, открывать по кнопке в авто, давать друзьям возможность открывать его самостоятельно и т.д. Частично я решил проблему еще в прошлом году, но недавно всё "допилил" и решил поделиться.

  Работа с docx c помощью bayoo-docx

Нужно найти в docx-файле определенный фрагмент и оставить к нему комментарий? bayoo-docx (форк python-docx) умеет это! В конце статьи в виде бонуса расскажем, как определить номер страницы. 😊

 

  Динамика в деле: интерактивные графики в Dash

Dash представляет собой фреймворк для визуализации данных и построения веб-приложений, понятен и довольно прост в применении. Может быть интересен тем, кто хочет использовать интерактивные графики для анализа данных с помощью Python. Рассмотрим построение таких графиков с применением обратных вызовов в Dash.

  Знакомство со стековыми графами

В декабре 2021 года Github объявил, что открывает общий доступ к точной навигации по коду для всех публичных и приватных репозиториев с Python на сайте GitHub.com. Точную навигацию в коде обеспечивают стековые графы, новый фреймвввооорк с открытым исходным кодом, созданный в Github и позволяющий устанавливать правила привязки имен для языка программирования при помощи декларативного предметно-ориентированного языка (DSL). Стековые графы позволяют генерировать данные о навигации по стеку для конкретного репозитория, не требуя при этом какого-либо участия в конфигурировании со стороны владельца репозитория и не вмешиваясь в процесс сборки или другие задания, связанные с непрерывной интеграцией. В этом посте будет подробно рассказано, как работают стековые графы, и как с их помощью достигаются такие результаты.

  Сделай то, сделай это, сделай сам

Многим приходилось сталкиваться с необходимостью анализа большого количества данных при помощи Python по запросам начальства или коллег. Однотипные запросы поступают с определенной периодичностью, и не составляет труда подставить новые данные в свой код и провести анализ. Но иногда из-за определенной нагрузки не всегда хочется заниматься таким анализом. Намного проще сделать скрипт с графическим интерфейсом, чтобы сам заказчик для анализа данных мог нажать пару кнопок и получить желаемый результат. Тем более, можно изначально вложить в интерфейс столько «хотелок» заказчика для анализа, сколько будет душе угодно.

  Автоматическая суммаризация текстов с помощью трансформеров Hugging Face. Часть 2

Перед вами вторая часть из серии материалов, состоящей из двух публикаций. Здесь я предлагаю практическое руководство по архитектуре ML-проекта, освоение которого позволит вам оценить качество автоматического реферирования (суммаризации) текстов в той области, в которой вы работаете.

  Сказание о том, как я argparse препарировал

Недавно мне потребовалось пересобрать N парсеров в один. В нем должен быть родитель и N детей, а также возможность использовать функции сразу всех подпарсеров.

Спойлер: это было непросто! В статье расскажу о проблемах, с которыми столкнулся, а также объясню, как устроен модуль argparse в Python 3 и что он умеет.

  VPN на минималках ч.2, или трое в docker не считая туннеля

К прошлой статье закономерно возник ряд вопросов, и, перед тем как продолжить рассказ о внутривенном курсе отечественного велосипедостроения внесу ряд важных уточнений. Как мне показалось, постановка задачи была достаточно понятной. Со временем оказалось, что всё-таки показалось.

  Пространственный анализ тренировок

Это продолжение серии статей об анализе данных персональных тренировок из набора FIT-файлов, которые создаются при использовании носимых устройств (фитнес-браслеты, часы, смартфоны, велокомпьютеры). В предыдущих двух я рассказывал о том, как получить доступ к данным совершенных тренировок и как можно визуализировать показатели на графике.

  Работа с отсутствующими значениями в Python

Отсутствующее значение в наборе данных отображается как вопросительный знак, ноль, NaN или просто пустая ячейка. Но как можно справиться с недостающими данными?

Конечно, каждая ситуация отличается и должна оцениваться по-разному.

  Причинно-следственный анализ в машинном обучении

Что появилось первым: курица или яйцо?

Статистики давно уже нашли ответ на этот вопрос.

Причем несколько раз.

И каждый раз ответ был разным.

  Парсинг для взрослых или Инфраструктура для промышленного парсинга

В студенческие годы я написал на заказ много парсеров магазинов и социальных сетей. Со временем парсеры усложнялись и из скриптов превращались в полноценные веб-приложения c базой данных и Rest API. В статье описан шаблон веб-приложения, который использую для создания парсеов.

  Робот-самурай. Как научить телеграм-бота писать хокку

Давно ничего не писал. Обещанного в прошло статье бота закончил, проект оказался довольно сложным, но опыта и знаний заметно прибавилось. А значит время начать новый проект! В этот раз, вдохновившись глубочайшими мыслями японских поэтов-философов, мы будем делать бота, который не просто постит хокку, а сам пишет и подбирает картинку по теме. Строго говоря, бот не придумывает хокку, а формирует новые из уже существующих, но хуже, как мне кажется, он от этого не становится. Итоговый код я оставлю на своём GitHub, а за работой бота можно следить в этом Телеграм канале. Подпишитесь, очень хочу, чтобы этот канал набрал аудиторию.

  IT-способ получения информации из достоверного источника

Поток информационных новостей сыпется со всех сторон. Поиск достоверной информацией становится всё затруднительнее. Для того, чтобы сделать правильный выбор необходимо лучше всего опираться на первоисточник. В мире экономики и финансов, пожалуй, одним их главных источников является Центральный Банк России. У Банка России реализован веб-сервис для получения ежедневных данных.

Видео

  Moscow Python Podcast. Про генерацию кода (level: all)

В гостях у Moscow Python Podcast Python руководитель разработки компании Магнит Антон Огородников. Обсудили с Антоном, как в Магните используют генерацию кода из OpenAPI спецификации, сбор метрик и как обстоят дела с генерацией кода в Python и Go.

Интересные проекты, инструменты, библиотеки

  Hypothesis GraphQL

Generate arbitrary queries matching your GraphQL schema, and use them to verify your backend implementation.