IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
читайте нас в Telegram


Новый материал в ленте
  Speeding Up Data Retrieval From PostgreSQL With Psycopg

Formatting and concatenating query result columns on the PostgreSQL side and then parsing them in Python might sometimes be faster than fetching the columns as separate values.


Python Дайджест. Выпуск 440

(23.05.2022 - 29.05.2022)

поделиться выпуском 
Дайджест python,

Статьи

  Подгон под MNIST-овский датасет

В интернете можно найти 1000 и 1 статью по тренингу мнистовского датасета для распознавания рукописных чисел. Однако когда дело доходит до практики и начинаешь распознавать собственные картинки, то модель справляется плохо или не справляется вовсе. Конечно же мы можем перевести картинку в оттенки серого, насильно поменять размер под мнистовский на 28x28 пикселей, и тогда наша сеть будет работать с подобными картинками:

  Как ускорить Python с помощью C-расширений

В этой статье я расскажу о том, как писать быстрый код на Python с использованием C-расширений и победить GIL.

  Анализ эффективности тренировок с помощью Python и линейной регрессии

Был ли эффект от регулярных тренировок? Я проанализировал данные своих предыдущих тренировок с помощью нескольких общепринятых методов и получил неоднозначные результаты.
 

  Собираем генератор данных на Blender. Часть 1: Объекты

Работая над idChess (приложением для распознавания и аналитики шахматных партий), мы расширяем наш датасет синтетическими данными. В качестве движка используем Blender. В этой статье рассмотрим основы взаимодействия с объектами, получение доступа через API, перемещение, масштабирование и вращение.

  Это наконец произошло: нейросеть и человек написали книгу. Вместе! Рассказываем, как им помогали разработчики

В издательстве Individuum вышел сборник рассказов «Пытаясь проснуться», написанных писателем и художником Павлом Пепперштейном и генеративной нейросетью ruGPT-3, разработанной командой SberDevices. 

  Асинхронный python без головной боли

Почему так сложно понять asyncio?
Асинхронное программирование традиционно относят к темам для "продвинутых". Действительно, у новичков часто возникают сложности с практическим освоением асинхронности. Но будь я автором самого толстого в мире учебника по python, я бы рассказывал читателям про асинхронное программирование уже с первых страниц. Вот только написали "Hello, world!" и тут же приступили к созданию "Hello, asynchronous world!". А уже потом циклы, условия и все такое.

  Как автоматически переписать текст другими словами, сохранив смысл? Рассказываем про рерайт-сервис

Часто при работе с текстами мы хотим не только выделить главное из больших отрывков, но и переписать текст, сохранив его смысл. В предыдущем посте мы рассказали, как команда SberDevices делала AI Service суммаризатора. Сегодня давайте поговорим про наш опыт создания не просто парафразера, а именно рерайтера текста. В связке эти инструменты могут быть полезны для множества практических задач. Демо обоих сервисов доступны в маркетплейсе AI Services.

  Работа с фреймворками Python: преимущества и проблемы

Фреймворки помогают ускорить разработку и сделать её приятнее. Программу, которая раньше писалась неделю и занимала 1000 строк, с помощью фреймворка вы можете создать за пару часов и уместить в 50 строчках кода. Некоторые решения даже поставляются в виде подписки на сервисы, и программисту остаётся только написать шаблонный код — остальное сервис сделает сам. Несмотря на всё это, в российском IT всё равно чаще выбирают писать что-то своё, тратя на это много сил, времени и денег. Почему так происходит, попытались разобраться с Денисом Наумовым, Techlead и Data Engineer в Skyeng. 

  Аналитика содержимого аудиоразговоров (пробуем, пытаемся)

Данная статья не является новшеством. Это скорее сборка использования различных технологий для достижения одной цели — определение и анализ полученных данных. В моем случае - это аналитика аудиосодержимого. Нет, у меня не будет графиков по правилам Котельникова. Мы будем складывать полученные данные в различные базы данных и последовательно анализировать полученное, а также пытаться автономно на существующих мощностях переопределять речь в текст. К сожалению в первой части больше теории.

  Классификация гистологических изображений со светлоклеточным раком почки, используя Keras

Год назад после участия в проекте по аннотации гистологических изображений, заинтересовался digital pathology и начал самостоятельно изучать то, что с этим связано (Python, ML,DL на Coursera и DataCamp) и в частности computer vision.

Для получения опыта, решил самостоятельно сделать проект по классификации гистологических изображений

  [recovery mode] Авто преписка в тг с привязкой к Google Calendar

У меня была такая проблема что я каждый день когда ложился спать всегда ставил в нике преписку что то по типу [БУДУ ЗАВТРА В 8:00] так вот в какой то момент меня это доконало и я решил сделать так что бы скрипт сам делал мне эту преписку, но будет брать события с Google Calendar. Думаю это довольно удобно ведь так можно будет записывать в календарь все свои дела а скрипт будет автоматически ко времени преписывать их к нику.

  Airtable & Telegram Bot — рецепт быстрого запуска

В данной статье рассмотрим интеграцию no-code базы данных с телеграмм ботом. Благодаря хорошему API и читабельной документации Airtable удобно использовать разработчику. При этом человеку, не знакомому с программированием, подвластно создание базы данных с нуля и аналитика без единой строчки кода. Фактически в данной статье получим готовый рецепт для быстрого запуска небольшого сервиса.

  Распределённая настройка гиперапараметров с помощью Ray Tune

Перед вами третий материал из серии статей, посвящённой настройке гиперпараметров. Если вы только осваиваете эту тему — взгляните на первую статью, в которой говорится о том, что такое настройка гиперпараметров. Во второй части, посвящённой настройке гиперпараметров в XGBoost, мы исследуем практический пример.В первом материале нашей серии, состоящей из трёх частей, мы говорили о том, как подбор гиперпараметров способен помочь в деле поиска оптимальных настроек, позволяющих получить наилучшие результаты от использования моделей машинного обучения. Затем, во втором материале, мы разобрались с тем, как проводить настройку гиперпараметров в XGBoost, и выяснили, что модель, гиперпараметры которой подверглись настройке, даёт более точные прогнозы, чем модель, гиперпараметры которой не модифицировались.

  Как мы классифицировали товары при разработке СDP-платформы

Сейчас мы активно развиваем собственную платформу клиентских данных (CDP) DV Platform. Коротко расскажу, зачем вообще она нужна. Платформа обрабатывает данные из маркетплейсов и позволяет создавать и передавать сегменты пользователей, которые с наибольшей вероятностью совершат покупки конкретной категории или товара. Это позволяет оптимизировать маркетинговые бюджеты и увеличивать онлайн-продажи брендов.

Видео

  Moscow Python Podcast. Инсайды с конференций (level: all)

В гостях у Moscow Python Podcast Python специалист по решению сложных технологических задач Александр Боргардт. Обсудили с Александром зачем устраивают конференции и как получить от них максимум пользы.