Собрали в одном месте самые важные ссылки
читайте авторский блог
Гибкий фреймворк для написания web-пауков (парсеров). Скачать можно по ссылке: https://pypi.python.org/pypi/scrapy
(24.10.2022 - 30.10.2022)
Сегодня я расскажу о нашем опыте создания робота для автоматизации повторяющихся действий сотрудников с помощью Jupyter, Python и Selenium. Статья будет интересна прежде всего менеджерам, которые хотят оптимизировать свою работу. Разработчикам мой текст будет полезен с точки зрения понимания возможностей по ускорению повторяющихся действий в интерфейсах. Весь необходимый код – внутри.
К сожалению, в python-мире до сих пор повсеместно применяется неизолированный запуск приложения и его инфраструктуры на личных устройствах. Боюсь, даже опытные специалисты неохотно используют контейнеризацию, хотя в действительности её плюсы неоспоримы.Во-первых, она позволяет при локальном запуске повторить среду продакшена, что может уберечь от многих неочевидных ошибок. А во-вторых, при переезде с компа на комп или при появлении нового разработчика не придётся в сотый раз корячиться с настройкой приложения и инфраструктуры. Конфигурация производится лишь однажды и в дальнейшем просто поддерживается в актуальном состоянии.
В статье я поделюсь опытом, как нам удалось всего за 5 дней собрать команду, придумать идею проекта, создать с нуля работающий прототип продукта, который решает реальную проблему на данных, и параллельно с этим посетить 12 встреч с ML-экспертами из ведущих AI компаний. Надеюсь, мой опыт поможет тебе подготовиться к твоему первому хакатону!
Представьте, что у вас есть функция random(), которая генерируют случайным образом значения в промежутке от 0 до 1. Вычислите значение числа Пи.
Это задачка с реального собеседования, будем разбираться! Читать далее
В предыдущем обзоре мы рассмотрели простую линейную регрессию (simple linear regression) - самый простой, стереотипный случай, когда исходные данные подчиняются нормальному закону, имеется сильная линейная корреляционная связь между показателями, отсутствует гетероскедастичность.
Краткое руководство по профилированию линии горизонта городской панорамы с помощью Python в несколько строк кода.
Несколько лет назад генерация 3D-сетки из единственного двумерного изображения была сложной задачей. Но сегодня благодаря продвижению глубокого обучения разработано множество монокулярных моделей оценки глубины, дающих точную оценку карты глубины изображения. С помощью этой карты, выполнив реконструкцию поверхности, можно создать сетку.
Несколько месяцев назад я написал статью про бота определяющего болезни кошек. За это время я сделал несколько улучшений и создал еще одного бота, но уже для собак. Ссылка на бота для кошек Бот для определения болезни кошек / Хабр (habr.com)
Бот может по симптомам определить болезнь собаки. Всего в списке есть 32 болезни. Это и заболевания внутренних органов, и опорно-двигательной системы и так же банальная чумка и бешенство.
Сегодня мы с нашими друзьями из Snaplet открываем исходники postgres-wasm — запускаемый в браузере сервер PostgreSQL с полным набором функционала, включая сохранение состояния в браузере, восстановление из pg_dump и логическую репликацию из удалённой базы данных. Впервые Postgres в браузере запустили в Crunchy Data, их потрясающая версия выложена на HN месяц назад. Вместе со Snaplet мы решили сделать версию с открытым кодом.
Сегодня я хочу представить вам третью статью из серии «Нейронные сети для начинающих». Мы научимся обрабатывать изображения и сохранять результаты в отдельные файлы.
Компьютер способен решить практически любую задачу, если ему дать правильные инструкции. С этого и начинается программирование. Даниэль Зингаро создал книгу для начинающих, чтобы вы сразу учились решать интересные задачи, которые использовались на олимпиадах по программированию, и развивали мышление программиста.
В каждой главе вам даются задания, собственные решения можно выложить на сайт и получить оценку профи. Вы на практике освоите основные возможности, функции и методы языка Python и получите четкое представление о структурах данных, алгоритмах и других основах программирования. Дополнительные упражнения потребуют от вас усилий, вы должны будете самостоятельно изучить новые понятия, а вопросы с несколькими вариантами ответов заставят задуматься об особенностях работы каждого фрагмента кода.
Squish - это платный инструмент для автоматического тестирования пользовательского интерфейса. Есть Squish для Qt, Squish для Windows, для веба, для Java и iOS.
Во всех случаях тестовые сценарии - это скрипты на питоне или других скриптовых языках.
Далее речь пойдет только про Squish для Qt и про питон.
Squish не требует модифицировать или перестраивать тестируемое приложение. Он встраивается в работающий процесс на этапе выполнения. Однако, возможность изменения кода все же пригодится, чтобы присвоить объектам имена, которые будут использоваться в тестовом скрипте.
Есть мнение, что прогнозирование временных рядов - сложная задача. Но не будем расстраиваться, ведь есть и плюсы - существует ещё большое количество задач, когда рядов сразу несколько, и такие задачи ещё сложнее! Когда начинаем сравнивать, понимаем, что прогнозировать одномерные временные ряды не так уж и сложно. А вот что делать с ситуацией, когда временной ряд обрастает параллельно идущими с ним последовательностями других параметров (многомерный ряд), какие методы и алгоритмы использовать, и что делать, если задача прогнозировать такие ряды есть, а опыта не очень много (спойлер - используйте AutoML, а пока он работает восполните пробел прочитав пару статей по теме).
Когда-то Юрий Орлов решил перейти из врачей в программисты. В 2018 году он устроился в Genix джуном, а сейчас он — тимлид VK Group. Начало истории вы можете послушать здесь, а в статье мы обсудим перипетии тимлидства — как опыт работы врачом помогает находить общий язык с людьми, должен ли тимлид писать код лучше членов команды, как работает Planning poker и что самое сложное в задачах тимлида.
Освойте ключевые навыки проектирования, разработки и развертывания приложений на базе машинного обучения (МО)!
Пошаговое руководство по созданию МО-приложений с упором на практику: для специалистов по обработке данных, разработчиков программного обеспечения и продакт-менеджеров.
Читая эту книгу, вы шаг за шагом создадите реальное практическое приложение — от идеи до внедрения. В вашем распоряжении примеры кодов, иллюстрации, скриншоты и интервью с ведущими специалистами отрасли.
Сводка от pythonz 10.11.2024 — 17.11.2024
ichigo - Local realtime voice AI
7 продвинутых приемов pandas для науки о данных
Auto_Jobs_Applier - Agen that automates the jobs application process
Building AI Applications with Enterprise-Grade Security Using RAG and FGA
30k аудиозаписей: наводим порядок
Python Dictionary Comprehensions: How and When to Use Them
Publishing to PyPI with a Trusted Publisher from GitLab CI/CD
Кроссплатформенные приложения на Python с Flet и FastAPI: Полное руководство по разработке
Pygame для начинающих программистов. Статья вторая. События