Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
(03.04.2023 - 09.04.2023)
Я хочу создать фреймворк, который позволит пользователям писать своих ботов Telegram с помощью языка, специфичного для конкретной области (DSL), или визуального представления, например, диаграммы UML. На основе предоставленных данных фреймворк будет генерировать необходимый Python-код для создания полнофункционального Telegram-бота. Которого можно будет сразу запустить где то на хостинге.
Когда дело доходит до написания крупных проектов или поддержки существующего кода, становится очень важным следовать определенным стандартам кодирования, чтобы обеспечить читаемость, понятность и поддерживаемость кода.
Сортировка массивов часто используется в программировании, чтобы помочь понять данные и выполнить поиск. Поэтому скорость сортировки больших объемов информации крайне важна для функциональных проектов и оптимизации времени работы. Есть много алгоритмов для упорядочения объектов.В статье вы посмотрите на реализацию и визуализацию пяти популярных алгоритмов сортировки: выбором, пузырьком, вставками, слиянием и быстрой сортировкой. Код написан на Python, а графический интерфейс построен на Tkinter.
Изучите ключевые концепции машинного обучения‚ работая над реальными проектами! Машинное обучение — то, что поможет вам в анализе поведения клиентов, прогнозировании тенденций движения цен, оценке рисков и многом другом. Чтобы освоить машинное обучение, вам нужны отличные примеры, четкие объяснения и много практики. В книге все это есть!
В современном мире большинство бизнес-процессов связаны с обработкой больших объемов данных, получаемых от различных источников. Часто эти данные содержат ошибки, дубликаты и пропуски, что может привести к неверным выводам и решениям. Одним из инструментов, которые позволяют очистить и преобразовать данные, является библиотека pandas для языка программирования Python.
Сегодня анализ данных стал неотъемлемой частью многих сфер деятельности, от науки до бизнеса. Python является одним из самых популярных инструментов для работы с данными, благодаря своей гибкости и обширному спектру доступных библиотек. Одной из таких библиотек является Pandas, предоставляющая удобные структуры данных и множество функций для анализа и обработки информации.
Хотите распределить тяжелую рабочую нагрузку в проектах на Python между несколькими процессорами или вычислительным кластером? В этой статье расскажем про лучшие фреймворки, которые помогут реализовать подобно желание на практике.
Расскажу вам о том, как мы придумали сервис, контролирующий поведение водителей общественного транспорта с помощью алгоритмов машинного обучения и компьютерного зрения.
В этой статье хотел бы с вами подискутировать о вечном противостоянии подходов High Code и Low Code: где сейчас находимся и кто выигрывает. Но перед тем, как мы перейдем к основной дискуссии, сразу оговорюсь, что текущее сражение я буду рассматривать применительно к сфере автоматизации процессов, в которой сам работаю и в вопросах которой немного разбираюсь.
И так в марте 2022 Steam отключила в российском сегменте Steam все основные способы оплаты для пользователей из России.Я на тот момент активно изучал новый для себя язык Python, и решил потренироваться создав бота позволяющего быстро и просто пополнять пользователям пополнять свой steam аккаунт. В этой статье описана структура проекта, принцип его работы и раскрыты некоторые особенности реализации.
От переводчика.У меня накопилось куча всяких там данных, документов, pdf, doc, видосов на ютюбе, которые я бы хотел проиндексировать, и чтобы можно было по этой базе знаний у нейронки что-нибудь спрашивать.Так же статья может пригодиться, если вы хотите собрать базу знаний по какой-то компании и затем заставить нейронку отвечать на вопросы пользователей. Например, чтобы ИИ прочитала кучу скучной документации, регламентов работы и прочего.Пока выбираю, на чем это лучше сделать. Вот наткнулся на нижеследующий вариант, который решил попробовать.
В большинстве вводных текстов по нейронным сетям при их описании используются аналогии с мозгом. Не углубляясь в аналогии с мозгом, я считаю, что проще описать нейронные сети как математическую функцию, которая отображает заданный вход в желаемый результат.
Недавно я решила попробовать реализовать задачу анализа эмоциональной окраски отзывов с Кинопоиска. Я бы хотела поделиться своим опытом и описать шаги, которые использовала для реализации стоящей передо мною задачей.
Задача контроля водителя очень актуальна в наше время. Должный контроль за состоянием водителей поможет сохранить здоровье автолюбителей, избежать многих дорожно-транспортных происшествий, тем самым снизив количество человеческих жертв. В конце 2022 года нашей команде поступил запрос на решение данной задачи. Было необходимо предложить подходы, используя которые можно понять, насколько устал водитель, занят ли он какими-либо посторонними делами за рулем, куда он смотрит при выполнении маневров, открыты ли у него глаза (не спит ли он) и т.д.После продолжительного изучения существующих исследований в данной области, было принято решение начать работу с разработки следующих прототипов.
Очередной выпуск англоязычного подкаста Python Bytes
Как добавить в существующую систему логирования Django поддержку syslog. Форматы, как их готовить и как документировать этот хаос. И кстати, зачем?
Python и Golang в чем-то похожи — легкий синтаксис, много библиотек, простота прототипирования. Но в последние годы у Go появляется ряд преимуществ, которые сподвигли меня и моих коллег перейти на этот язык. Я расскажу, что выиграет разработчик и бизнес, выбрав Go. И какие проблемы вы получите взамен.
Кажется, мы уже все привыкли работать с контейнерами, но до сих пор у текущих имплементаций контейнерных рантаймов был фатальный недостаток — они написаны не на Python. Попробуем это исправить?
Временами вам необходимо передать аргументы для запуска GUI приложения. Например, вам необходимо указать файлы для запуска. В коротком туториал, мы создадим демо приложение, которое принимает аргументы из командной строки.
XML/HTML парсер. Скачать можно по ссылке: https://pypi.python.org/pypi/beautifulsoup4/
Статический анализатор Python-кода. Скачать можно по ссылке: https://pypi.python.org/pypi/pylint/
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
Утилита позволяющая измерить процент покрытия тестами. Скачать можно по ссылке: https://pypi.python.org/pypi/coverage/
Панель отладки и профилирования Django приложений. Скачать можно по ссылке: https://pypi.python.org/pypi/django-debug-toolbar/
Простой мощный инструмент тестирования в Python. Скачать можно по ссылке: https://pypi.python.org/pypi/pytest/
Python интерфейс для PostgreSQL. Скачать можно по ссылке: https://pypi.python.org/pypi/psycopg2/
Best Shift-Left Testing Tools to Improve Your QA
htmy: Async, Pure-Python Rendering Engine
statsmodels: Statistical Modeling and Econometrics in Python
markitdown: Convert Files and Office Documents to Markdown
Talk Python to Me: #490: Django Ninja
SVG-виджеты для tcl/tk. Финальный аккорд. Часть IV
Implementing Approximate Nearest Neighbor Search with KD-Trees
Пишем свой PyTorch на NumPy. Часть 1
Царство грибов. Симуляция мицелия на p5py. Битвы гифов. Часть первая
django-liveconfigs - управление настройками в django
Мэтчинг персонажей. Level Hard
Стратификация: как не облажаться с A/B тестами