Собрали в одном месте самые важные ссылки
читайте авторский блог
Простой и быстрый шаблонизатор. Скачать можно по ссылке: https://pypi.python.org/pypi/Jinja2/
(08.04.2024 - 14.04.2024)
Maintaining code quality can be challenging no matter the size of your project or the number of contributors. Pre-commit hooks make it a little easier. This article provides a step-by-step guide to installing and configuring pre-commit hooks on your project.
В главе 2 я создал простой шаблон для домашней страницы приложения и использовал поддельные объекты в качестве заполнителей для того, чего у меня еще нет, например, пользователей и записей в блоге. В этой главе я собираюсь устранить одно из многих недостатков, которые у меня все еще есть в этом приложении, в частности, как принимать входные данные от пользователей через веб-формы.
Когда я начинал писать своих первых ботов с использованием базы данных, их код был очень плохим: он расходовал лишние ресурсы, а также была плохая архитектура проекта. Поэтому я хочу поделиться с вами своими знаниями, чтобы вы не наступали на те грабли, на которые наступал я. В проекте бота, который будет использован в качестве примера в данной статье, я использовал такие технологии, как aiogram, SQLAlchemy, alembic и Docker. В качестве СУБД выступает PostgreSQL
Недавно в документации к API GigaChat появился раздел, посвящённый работе с функциями, аналогично тому, как это реализовано в ChatGPT. Идея заключается в том, что модели передаётся информация о доступных ей функциях, и в зависимости от запроса пользователя модель может обратиться к этим функциям и добавить их результат к промту для генерации ответа
Discover the power of Pydantic, Python's most popular data parsing, validation, and serialization library. In this hands-on tutorial, you'll learn how to make your code more robust, trustworthy, and easier to debug with Pydantic.
A look at what pgMustard does and how to use it with the Django ORM, especially for dissecting slow queries.
Одной из самых распространённых задач современной аналитики является формирование суждений о большой совокупности (например, о миллионах пользователей приложения), опираясь на данные лишь о небольшой части этой совокупности - выборке. Можно ли сделать вывод о миллионной аудитории крупного мобильного приложения, собрав данные об использовании лишь для 100 пользователей?
В этой статье я расскажу про ключевые аспекты и концепции работы с наиболее популярными алгоритмами и структурами данных. Это поможет и в реальных проектах, и чтобы глубже понять алгоритмические принципы. Статья подойдёт специалистам, которые хотят углубить свои знания в программировании, и укрепить навыки нахождения оптимальных решений алгоритмических задач.
Мы разочаровались в курсах по программированию и поэтому сделали свои собственные. Не для вайтишников, а для типичных разрабов. В процессе нас хакнул инфлюенсер и забанил сервер телеграма. Покоцанные, но не сломленные, мы представляем проект, над которым работали полтора года по ночам. Курсы по программированию с задачами в online IDE и прагматичной теорией. Никаких сертификатов и гарантий трудоустройства. Сплошной хардкор и опенсорс!
Это четвертая часть серии мега-учебника по Flask, в которой я собираюсь рассказать вам, как работать с базами данных. Тема этой главы чрезвычайно важна. Для большинства приложений потребуется поддерживать постоянные данные, которые можно эффективно извлекать, и это именно то, для чего созданы базы данных.
А теперь о том, что происходило в последнее время на других ресурсах.
Пока люди с самыми малыми вычислительными машинами в пустую тратят время на перебор гиперпараметров внутри библиотеки Scikit-learn – настоящие гении тайм-менеджмента выбирают TPE и Optuna.
Давайте на примере анализа годовых температур в Москве разберемся как с его помощью можно выгрузить, предобработать и визуализировать данные новичку в этом деле.
Разбираем задачи прошедшего квеста на миллион. Для простоты, в разборе будем использовать формализованные формулировки задачи. Ознакомиться с исходными формулировками можно в самом квесте. Квест открыт и доступен для прохождения.
Мы построили DWH из Open-source продуктов. В этой статье расскажу, какие продукты мы используем, какие хитрости придумали для работы с ними как вся система работает вместе.
Код на C# и на Go часто пронизан специальными объектами, отвечающими за прекращение работы — они называются токенами отмены, либо в случае Go — контекстами. Это супер-удобно и делает программы компактнее + надежнее, но питонисты про такое почему-то не в курсе. Мне пришлось решать эту проблему и написать свой инструмент + начать популяризировать паттерн.
В KION в сутки поступает свыше 400 миллионов продуктовых событий (помимо технических). На основе этих событий продуктовые вертикали строят аналитику, следят за продуктом, принимают бизнес решения. Качество поступаемых данных критично важно. В докладе расскажу про весь pipeline событий, как мы их готовим для аналитиков и продактов.
Когда у вас достаточно большой и разношёрстный спектр запросов клиентов, а вам необходимо все это валидировать, и на это нет ресурсов в виде LLM или NN — "Что же делать?". Расскажу, как сделать классификацию быстро и без больших затрат на разметку и обучение.
Web-фреймворк на основе Werkzeug, Jinja2 и благих намерениях. Скачать можно по ссылке: https://pypi.python.org/pypi/Flask/
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
Фреймворк для работы с AMQP. Скачать можно по ссылке: https://pypi.python.org/pypi/kombu/
Janus - Unified Multimodal Understanding and Generation Models
raglite - Retrieval-Augmented Generation (RAG) with PostgreSQL or SQLite
Сокращать срок или платёж — раскрываем черный ящик ипотечного калькулятора
Python decorators: A super useful feature
Сортировка книг по тематикам скриптами Python
ridgeplot: Beautiful Ridgeline Plots in Python